【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結(jié)論:SABESBCEAFG=∠AGF;FAG2ACF;BHCH.其中所有正確結(jié)論的序號(hào)是

A.①②③④B.①②③C.②④D.①③

【答案】B

【解析】

根據(jù)等底等高的三角形的面積相等即可判斷①;根據(jù)三角形內(nèi)角和定理求出∠ABC=CAD,根據(jù)三角形的外角性質(zhì)即可推出②;根據(jù)三角形內(nèi)角和定理求出∠FAG=ACD,根據(jù)角平分線定義即可判斷③;根據(jù)等腰三角形的判定判斷④即可.

解:∵BE是中線,
AE=CE,
SABESBCE(等底等高的三角形的面積相等),故①正確;
CF是角平分線,
∴∠ACF=BCF
AD為高,
∴∠ADC=90°,
∵∠BAC=90°,
∴∠ABC+ACB=90°,∠ACB+CAD=90°,
∴∠ABC=CAD,
∵∠AFG=ABC+BCF,∠AGF=CAD+ACF,
∴∠AFG=AGF,故②正確;
AD為高,
∴∠ADB=90°,
∵∠BAC=90°,
∴∠ABC+ACB=90°,∠ABC+BAD=90°,
∴∠ACB=BAD
CF是∠ACB的平分線,
∴∠ACB=2ACF
∴∠BAD=2ACF,
即∠FAG=2ACF,故③正確;
根據(jù)已知條件不能推出∠HBC=HCB,即不能推出BH=CH,故④錯(cuò)誤;
故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)BD上,BE=DF.

(1)求證:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板ABC和三角板BDE(∠ACB=DBE=90°,∠ABC=60°)按不同的位置擺放.

1)如圖1,若邊BD,BA在同一直線上,則∠EBC= ;

2)如圖2,若∠EBC=165°,那么∠ABD=

3)如圖3,若∠EBC=120°,求∠ABD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列解答中,填寫適當(dāng)?shù)睦碛苫驍?shù)學(xué)式:

1)∵EBDC, (已知)

∴∠DAE=__. ___________________________________

2)∵∠BCF+AFC=180°,(已知)

_______. ___________________________________

3)∵ _______, (已知)

∴∠EFA=ECB . ___________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某相宜本草護(hù)膚品專柜計(jì)劃在春節(jié)前夕促銷甲、乙兩款護(hù)膚品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下兩種信息:

信息一:銷售甲款護(hù)膚品所獲利潤(rùn)y(元)與銷售量x(件)之間存在二次函數(shù)關(guān)系y=ax2+bx.在x=10時(shí),y=140;當(dāng)x=30時(shí),y=360.

信息二:銷售乙款護(hù)膚品所獲利潤(rùn)y(元)與銷售量x(件)之間存在正比例函數(shù)關(guān)系y=3x.請(qǐng)根據(jù)以上信息,解答下列問題;

(1)求信息一中二次函數(shù)的表達(dá)式;

(2)該相宜本草護(hù)膚品專柜計(jì)劃在春節(jié)前夕促銷甲、乙兩款護(hù)膚品共100件,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營(yíng)銷方案,使銷售甲、乙兩款護(hù)膚品獲得的利潤(rùn)之和最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分)如圖,管中放置著三根同樣的繩子,

)小明從這三根繩子中隨機(jī)選一根,恰好選中繩子的概率是__________

)小明先從左端 , 三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),再?gòu)挠叶?/span> , 三個(gè)繩頭中隨機(jī)選兩個(gè)打一個(gè)結(jié),求這三根繩子能連結(jié)成一根長(zhǎng)繩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,12×12的正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,正方形的頂點(diǎn)叫做格點(diǎn).矩形ABCD的四個(gè)頂點(diǎn)A,B,C,D都在格點(diǎn)上,將ADC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)得到ADC,點(diǎn)C與點(diǎn)C為對(duì)應(yīng)點(diǎn)

1)在正方形網(wǎng)格中確定D的位置,并畫出ADC;

2若邊AB交邊CD于點(diǎn)E,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格中的每一個(gè)小方格都是是邊長(zhǎng)為 1 個(gè)單位的正方形,只能使用無刻度直尺,請(qǐng)以格點(diǎn)為頂點(diǎn)按照以下要求作圖:

1)請(qǐng)?jiān)趫D 1 中畫出ABC,其中AC=,AB=BC=;

2)請(qǐng)?jiān)趫D 2 中畫出面積為 8 的正方形 ABCD,且找出點(diǎn) O,使得經(jīng)過點(diǎn) O 的所有直線都平分正方形ABCD 的面積,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B.

(1)求二次函數(shù)y=ax2+bx+c的解析式;

(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案