【題目】如圖,在下列10×10的網(wǎng)格中,橫、縱坐標(biāo)均為整點(diǎn)的數(shù)叫做格點(diǎn),例如A(2,1)、B(5,4)、C(1,8)都是格點(diǎn).
(1)直接寫出△ABC的面積;
(2)將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到△A1BC1,在網(wǎng)格中畫出△A1BC1;
(3)在圖中畫出線段EF,使它同時(shí)滿足以下條件:①點(diǎn)E在△ABC內(nèi);②點(diǎn)E,F都是格點(diǎn);③EF三等分BC;④EF=.請(qǐng)寫出點(diǎn)E,F的坐標(biāo).
【答案】(1)12;(2)見解析;(3)E(2,4),F(7,8).
【解析】
(1)用一個(gè)矩形的面積分別減去三個(gè)直角三角形的面積去計(jì)算△ABC的面積;
(2)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫出A、C的對(duì)應(yīng)點(diǎn)A1、C1即可得到△A1BC1;
(3)利用平行線分線段成比例得到CF:BE=2,則EF三等分BC,然后寫出E、F的坐標(biāo),根據(jù)勾股定理求出EF的長度為
解:(1)△ABC的面積=4×7﹣×7×1﹣×3×3﹣×4×4=12;
(2)如圖,△A1BC1為所作;
(3)如圖,線段EF為所作,其中E點(diǎn)坐標(biāo)為(2,4),F點(diǎn)坐標(biāo)為(7,8),EF的長度為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,將線段繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)到線段.由沿方向平移得到,且直線過點(diǎn).
(1)求的大小;
(2)求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一輛單車放在水平的地面上,車把頭下方處與坐墊下方處在平行于地面的同一水平線上,,之間的距離約為,現(xiàn)測(cè)得,與的夾角分別為與,若點(diǎn)到地面的距離為,坐墊中軸處與點(diǎn)的距離為,求點(diǎn)到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過點(diǎn)E(0,﹣2)且平行于x軸,過A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.
(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;
②試說明無論k取何值,的值都等于同一個(gè)常數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))
如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.
填空:①線段CF與DG的數(shù)量關(guān)系為 ;
②直線CF與DG所夾銳角的度數(shù)為 .
(2)(拓展探究)
如圖②,將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②進(jìn)行說明.
(3(解決問題)
如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC的中點(diǎn).若點(diǎn)D在直線BC上運(yùn)動(dòng),連接OE,則在點(diǎn)D的運(yùn)動(dòng)過程中,線段OE長的最小值為 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1h.為此,某區(qū)就“你每天在校體育活動(dòng)時(shí)間是多少”的問題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖如圖所示,其中A組為t<0.5h,B組為0.5h≤t<1h,C組為1h≤t<1.5h,D組為t≥1.5h.
請(qǐng)根據(jù)上述信息解答下列問題:
(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在 組內(nèi),中位數(shù)落在 組內(nèi);
(2)該轄區(qū)約有18000名初中學(xué)生,請(qǐng)你估計(jì)其中達(dá)到國家規(guī)定體育活動(dòng)時(shí)間的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O外的一點(diǎn),CB與⊙O相切于點(diǎn)B,AC交⊙O于點(diǎn)D,點(diǎn)E是上的一點(diǎn)(不與點(diǎn)A,B,D重合),若∠C=48°,則∠AED的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是( )
A. ①③④B. ②④⑤C. ①③⑤D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在梯形ABCD中,AB//CD,AB=12,CD=7,點(diǎn)E在邊AD上,,過點(diǎn)E作EF//AB交邊BC于點(diǎn)F.
(1)求線段EF的長;
(2)設(shè),,聯(lián)結(jié)AF,請(qǐng)用向量表示向量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com