【題目】(1)(問題發(fā)現(xiàn))
如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.
填空:①線段CF與DG的數(shù)量關系為 ;
②直線CF與DG所夾銳角的度數(shù)為 .
(2)(拓展探究)
如圖②,將正方形AEFG繞點A逆時針旋轉,在旋轉的過程中,(1)中的結論是否仍然成立,請利用圖②進行說明.
(3(解決問題)
如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC的中點.若點D在直線BC上運動,連接OE,則在點D的運動過程中,線段OE長的最小值為 (直接寫出結果).
【答案】(1)①CF=DG;②45°;(2)成立,證明詳見解析;(3).
【解析】
(1)【問題發(fā)現(xiàn)】連接AF.易證A,F,C三點共線.易知AF=AG.AC=AD,推出CF=AC﹣AF=(AD﹣AG)=DG.
(2)【拓展探究】連接AC,AF,延長CF交DG的延長線于點K,AG交FK于點O.證明△CAF∽△DAG即可解決問題.
(3)【解決問題】證明△BAD≌△CAE,推出∠ACE=∠ABC=45°,可得∠BCE=90°,推出點E的運動軌跡是在射線OCE上,當OE⊥CE時,OE的長最短.
解:(1)【問題發(fā)現(xiàn)】如圖①中,①線段CF與DG的數(shù)量關系為CF=DG;
②直線CF與DG所夾銳角的度數(shù)為45°.
理由:如圖①中,連接AF.易證A,F,C三點共線.
∵AF=AG.AC=AD,
∴CF=AC﹣AF=(AD﹣AG)=DG.
故答案為CF=DG,45°.
(2)【拓展探究】結論不變.
理由:連接AC,AF,延長CF交DG的延長線于點K,AG交FK于點O.
∵∠CAD=∠FAG=45°,
∴∠CAF=∠DAG,
∵AC=AD,AF=AG,
∴,
∴△CAF∽△DAG,
∴,∠AFC=∠AGD,
∴CF=DG,∠AFO=∠OGK,
∵∠AOF=∠GOK,
∴∠K=∠FAO=45°.
(3)【解決問題】如圖3中,連接EC.
∵AB=AC,AD=AE,∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,∠B=∠ACB=45°,
∴△BAD≌△CAE(SAS),
∴∠ACE=∠ABC=45°,
∴∠BCE=90°,
∴點E的運動軌跡是在射線CE上,當OE⊥CE時,OE的長最短,易知OE的最小值為,
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的直徑,,垂足為點,連接交于點,延長交于點,連接并延長交于點.則下列結論:①;②;③點是的中點.其中正確的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,連接AC.過點B作⊙O的切線,交AC的延長線于點D,在AD上取一點E,使AE=AB,連接BE,交⊙O于點F.
請補全圖形并解決下面的問題:
(1)求證:∠BAE=2∠EBD;
(2)如果AB=5,sin∠EBD=.求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為x=1的拋物線經過A(﹣1,0),B(2,﹣3)兩點.
(1)求拋物線的解析式;
(2)P是拋物線上的動點,連接PO交直線AB于點Q,當Q是OP中點時,求點P的坐標;
(3)C在直線AB上,D在拋物線上,E在坐標平面內,以B,C,D,E為頂點的四邊形為正方形,直接寫出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的對稱軸是x=﹣1,與x軸的一個交點為(﹣5,0),則不等式ax2+bx+c>0的解集為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在下列10×10的網(wǎng)格中,橫、縱坐標均為整點的數(shù)叫做格點,例如A(2,1)、B(5,4)、C(1,8)都是格點.
(1)直接寫出△ABC的面積;
(2)將△ABC繞點B逆時針旋轉90°得到△A1BC1,在網(wǎng)格中畫出△A1BC1;
(3)在圖中畫出線段EF,使它同時滿足以下條件:①點E在△ABC內;②點E,F都是格點;③EF三等分BC;④EF=.請寫出點E,F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒子里有標號分別為1,2,3,4的四個球,這些球除標號數(shù)字外都相同.
(1)從盒中隨機摸出一個小球,求摸到標號數(shù)字為奇數(shù)的球的概率;
(2)甲、乙兩人用這四個小球玩摸球游戲,規(guī)則是:甲從盒中隨機摸出一個小球,記下標號數(shù)字后放回盒里,充分搖勻后,乙再從盒中隨機摸出一個小球,并記下標號數(shù)字.若兩次摸到球的標號數(shù)字同為奇數(shù)或同為偶數(shù),則判甲贏;若兩次摸到球的標號數(shù)字為一奇一偶,則判乙贏.請用列表法或畫樹狀圖的方法說明這個游戲對甲、乙兩人是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分. 如圖,甲在O點正上方1 m的點P發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式:,已知點O與球網(wǎng)的水平距離為5 m,球網(wǎng)的高度1.55 m.
(1)當時,求h的值,并通過計算判斷此球能否過網(wǎng);
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為的Q處時,乙扣球成功,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,是等邊三角形,AP、BP的延長線分別交邊CD于點E、F,聯(lián)結AC、CP、AC與BF相交于點H,下列結論中錯誤的是( )
A.AE=2DEB.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com