【題目】如圖,銳角△ABC的高CDBE相交于點(diǎn)O , 圖中與△ODB相似的三角形有(  )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】C
【解析】解答:∵∠BDO=∠BEA= ,∠DBO=∠EBA , ∴△BDO∽△BEA
∵∠BOD=∠COE , ∠BDO=∠CEO=
∴△BDO∽△CEO ,
∵∠CEO=∠CDA= ,∠ECO=∠DCA
∴△CEO∽△CDA ,
∴△BDO∽△BEA∽△CEO∽△CDA
故選:C.

分析:根據(jù)∠BDO=∠BEA= ,∠DBO=∠EBA , 證得△BDO∽△BEA , 同理可證△BDO∽△CEO , △CEO∽△CDA , 從而可知.此題考查了相似三角形的判定,解題的關(guān)鍵是找出兩個(gè)對(duì)應(yīng)角相等.
【考點(diǎn)精析】掌握相似三角形的判定是解答本題的根本,需要知道相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列式子中是一元一次方程的是(  )

A. ﹣2=5 B. 2x﹣3 C. x=y D. 3x=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,在等邊△ABC中,AB=10,BD=4BE=2,點(diǎn)P從點(diǎn)E出發(fā)沿EA方向運(yùn)動(dòng),連接PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長是( )

A. 8 B. 10 C. 3π D. 5π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠A=90°,AB=AC , BC=63cm,現(xiàn)沿底邊依次從下往上裁剪寬度均為3cm的矩形紙條,如圖所示,已知剪得的紙條中有一張是正方形,則這張正方形紙條是從下往上數(shù)第張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,PAB上一點(diǎn),則下列四個(gè)條件中, ①∠ACP=∠B②∠APC=∠ACBABCP=APCB ,
其中能滿足△APC和△ACB相似的條件有(  )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為表彰在某活動(dòng)中表現(xiàn)積極的同學(xué),老師決定購買文具盒與鋼筆作為獎(jiǎng)品.已知5個(gè)文具盒、2支鋼筆共需100元;3個(gè)文具盒、1支鋼筆共需57元.

(1)每個(gè)文具盒、每支鋼筆各多少元?

(2)若本次表彰活動(dòng),老師決定購買10件作為獎(jiǎng)品,若購買個(gè)文具盒,10件獎(jiǎng)品共需元,求的函數(shù)關(guān)系式.如果至少需要購買3個(gè)文具盒,本次活動(dòng)老師最多需要花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是平行四邊形,點(diǎn)E在邊BC延長線上,連AECD于點(diǎn)F , 如果∠EAC=∠D , 試問:ACBEAECD是否相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在同一平面內(nèi)OA⊥OB,OCOA繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.

(1)若α=60∠AOC=60°時(shí),求∠BOC,∠DOE.

(2)在α的變化過程中,∠DOE的度數(shù)是一個(gè)定值嗎?若是定值,請(qǐng)求出這個(gè)值;若不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點(diǎn)D、E,過點(diǎn)D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求DF的長;
(3)寫出求圖中陰影部分的面積的思路.(不求計(jì)算結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案