【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線(xiàn)MN∥BC,設(shè)MN交∠ACB的平分線(xiàn)于點(diǎn)E,交∠ACB的外角平分線(xiàn)于點(diǎn)F.
(1)探究:線(xiàn)段OE與OF的數(shù)量關(guān)系并加以證明;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),且△ABC滿(mǎn)足什么條件時(shí),四邊形AECF是正方形?
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí),四邊形BCFE 是菱形嗎?(填“可能”或“不可能”)
【答案】(1)OE=OF.理由見(jiàn)解析;(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn),且△ABC滿(mǎn)足∠ACB為直角的直角三角形時(shí),四邊形AECF是正方形.理由見(jiàn)解析;(3)不可能,理由見(jiàn)解析
【解析】試題分析:(1)由直線(xiàn)MN∥BC,MN交∠BCA的平分線(xiàn)于點(diǎn)E,∠BCA的外角平分線(xiàn)與點(diǎn)F,易證得△OEC與△OFC是等腰三角形,則可證得OE=OF=OC;
(2)這是正方形的判定問(wèn)題,四邊形AECF若是正方形,則必有對(duì)角線(xiàn)OA=OC,所以O為AC的中點(diǎn),同樣在△ABC中,當(dāng)∠ACB=90°時(shí),可滿(mǎn)足其為正方形;
(3)此問(wèn)題是菱形的判定問(wèn)題,若是菱形,則必有四條邊相等,對(duì)角線(xiàn)互相垂直.
試題解析:(1)OE=OF.理由如下:
∵CE是∠ACB的角平分線(xiàn),
∴∠ACE=∠BCE,
又∵MN∥BC,
∴∠NEC=∠ECB,
∴∠NEC=∠ACE,
∴OE=OC,
∵OF是∠BCA的外角平分線(xiàn),
∴∠OCF=∠FCD,
又∵MN∥BC,
∴∠OFC=∠ECD,
∴∠OFC=∠COF,
∴OF=OC,
∴OE=OF;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn),且△ABC滿(mǎn)足∠ACB為直角的直角三角形時(shí),四邊形AECF是正方形.理由如下:
∵當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),AO=CO,
又∵EO=FO,
∴四邊形AECF是平行四邊形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四邊形AECF是矩形.
已知MN∥BC,當(dāng)∠ACB=90°,則
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四邊形AECF是正方形;
(3)不可能.理由如下:
如圖,∵CE平分∠ACB,CF平分∠ACD,
∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°,
若四邊形BCFE是菱形,則BF⊥EC,
但在△GFC中,不可能存在兩個(gè)角為90°,所以不存在其為菱形.
故答案為不可能.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)為D(–1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)頂點(diǎn)的一條直線(xiàn),.分別是直線(xiàn)上兩點(diǎn),且.
(1)若直線(xiàn)經(jīng)過(guò)的內(nèi)部,且在射線(xiàn)上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖1,若,,
則 ; (填“”,“”或“”);
②如圖2,若,請(qǐng)?zhí)砑右粋(gè)關(guān)于與關(guān)系的條件 ,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖3,若直線(xiàn)經(jīng)過(guò)的外部,,請(qǐng)?zhí)岢?/span>三條線(xiàn)段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線(xiàn)AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請(qǐng)你數(shù)一數(shù),圖中有______個(gè)小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請(qǐng)通過(guò)計(jì)算說(shuō)明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在四邊形ABCD中,點(diǎn)E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求證:AC=CD;
(2)若AC=AE,求∠DEC的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)112.5°.
【解析】試題分析: 根據(jù)同角的余角相等可得到結(jié)合條件,再加上 可證得結(jié)論;
根據(jù) 得到 根據(jù)等腰三角形的性質(zhì)得到 由平角的定義得到
試題解析: 證明:
在△ABC和△DEC中, ,
(2)∵∠ACD=90°,AC=CD,
∴∠1=∠D=45°,
∵AE=AC,
∴∠3=∠5=67.5°,
∴∠DEC=180°-∠5=112.5°.
【題型】解答題
【結(jié)束】
21
【題目】一個(gè)零件的形狀如圖所示,工人師傅按規(guī)定做得∠B=90°,
AB=3,BC=4,CD=12,AD=13,假如這是一塊鋼板,你能幫工人師傅計(jì)算一下這塊鋼板的面積嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在數(shù)軸上A、B兩點(diǎn)對(duì)應(yīng)的數(shù)分別是6,-6,∠DCE=90°(C與O重合,D點(diǎn)在數(shù)軸的正半軸上)
(1)如圖1,若CF平分∠ACE,則∠AOF=_______;
(2)如圖2,將∠DCE沿?cái)?shù)軸的正半軸向右平移t(0<t<3)個(gè)單位后,再繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCF=α.
①當(dāng)t=1時(shí),α=_________;
②猜想∠BCE和α的數(shù)量關(guān)系,并證明;
(3)如圖3,開(kāi)始∠D1C1E1與∠DCE重合,將∠DCE沿?cái)?shù)軸正半軸向右平移t(0<t<3)個(gè)單位,再繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時(shí)記∠DCF=α,與此同時(shí),將∠D1C1E1沿?cái)?shù)軸的負(fù)半軸向左平移t(0<t<3)個(gè)單位,再繞頂點(diǎn)C1順時(shí)針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1=β,若α,β滿(mǎn)足|α-β|=45°,請(qǐng)用t的式子表示α、β并直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】黨的十八大提出,倡導(dǎo)富強(qiáng)、民主、文明、和諧,倡導(dǎo)自由、平等、公正、法治,倡導(dǎo)愛(ài)國(guó)、敬業(yè)、誠(chéng)信、友善,積極培育和踐行社會(huì)主義核心價(jià)值觀(guān),這24個(gè)字是社會(huì)主義核心價(jià)值觀(guān)的基本內(nèi)容.其中:
“富強(qiáng)、民主、文明、和諧”是國(guó)家層面的價(jià)值目標(biāo);
“自由、平等、公正、法治”是社會(huì)層面的價(jià)值取向;
“愛(ài)國(guó)、敬業(yè)、誠(chéng)信、友善”是公民個(gè)人層面的價(jià)值準(zhǔn)則.
小光同學(xué)將其中的“文明”、“和諧”、“自由”、“平等”的文字分別貼在4張硬紙板上,制成如右圖所示的卡片.將這4張卡片背面朝上洗勻后放在桌子上,從中隨機(jī)抽取一張卡片,不放回,再隨機(jī)抽取一張卡片.
(1)小光第一次抽取的卡片上的文字是國(guó)家層面價(jià)值目標(biāo)的概率是 ;
(2)請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法,幫助小光求出兩次抽取卡片上的文字一次是國(guó)家層面價(jià)值目標(biāo)、一次
是社會(huì)層面價(jià)值取向的概率(卡片名稱(chēng)可用字母表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)內(nèi):
﹣5,|-|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),
(1)正數(shù)集合:{ …}
(2)負(fù)數(shù)集合:{ …}
(3)整數(shù)集合:{ …}
(4)分?jǐn)?shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是對(duì)角線(xiàn)BD上一點(diǎn),且滿(mǎn)足BE=BC.連接CE并延長(zhǎng)交AD于點(diǎn)F,連接AE,過(guò)B點(diǎn)作BG⊥AE于點(diǎn)G,延長(zhǎng)BG交AD于點(diǎn)H.在下列結(jié)論中:
①AH=DF; ②∠AEF=45°; ③S四邊形EFHG=S△DEF+S△AGH,
其中正確的結(jié)論有_____________________.(填正確的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com