【題目】紅樹林學校在七年級新生中舉行了全員參加的“防溺水”安全知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個班中各隨機取10名同學的成績(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
分數(shù) 人數(shù) 班級 | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根據(jù)以上信息回答下列問題:
(1)請直接寫出表格中的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由;
(3)為了讓學生重視安全知識的學習,學校將給競賽成績滿分的同學頒發(fā)獎狀,該校七年級新生共570人,試估計需要準備多少張獎狀?
【答案】(1),,;(2)2班成績比較好;理由見解析;(3)估計需要準備76張獎狀.
【解析】
(1)根據(jù)眾數(shù)和中位數(shù)的概念求解可得;
(2)分別從平均數(shù)、眾數(shù)和中位數(shù)三個方面比較大小即可得;
(3)利用樣本估計總體思想求解可得.
(1)由題意知,
,
2班成績重新排列為60,70,80,80,80,90,90,90,90,100,
∴;
(2)從平均數(shù)上看三個班都一樣;
從中位數(shù)看,1班和3班一樣是80,2班最高是85;
從眾數(shù)上看,1班和3班都是80,2班是90;
綜上所述,2班成績比較好;
(3)(張),
答:估計需要準備76張獎狀.
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,點的橫、縱坐標的絕對值之和叫做點的勾股值,記.若拋物線與直線只有一個交點,已知點在第一象限,且,令,則的取值范圍為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過原點和點,頂點為,拋物線與拋物線關(guān)于原點對稱.
(1)求拋物線的函數(shù)表達式及點的坐標;
(2)已知點、在拋物線上的對應點分別為、,的對稱軸交軸于點,則拋物線的對稱軸上是否存在點,使得以、、為頂點的三角形與相似?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:兩個相似等腰三角形,如果它們的底角有一個公共的頂點,那么把這兩個三角形稱為“關(guān)聯(lián)等腰三角形”.如圖,在與中, ,且所以稱與為“關(guān)聯(lián)等腰三角形”,設(shè)它們的頂角為,連接,則稱會為“關(guān)聯(lián)比".
下面是小穎探究“關(guān)聯(lián)比”與α之間的關(guān)系的思維過程,請閱讀后,解答下列問題:
[特例感知]
當與為“關(guān)聯(lián)等腰三角形”,且時,
①在圖1中,若點落在上,則“關(guān)聯(lián)比”=
②在圖2中,探究與的關(guān)系,并求出“關(guān)聯(lián)比”的值.
[類比探究]
如圖3,
①當與為“關(guān)聯(lián)等腰三角形”,且時,“關(guān)聯(lián)比”=
②猜想:當與為“關(guān)聯(lián)等腰三角形”,且時,“關(guān)聯(lián)比”= (直接寫出結(jié)果,用含的式子表示)
[遷移運用]
如圖4, 與為“關(guān)聯(lián)等腰三角形”.若點為邊上一點,且,點為上一動點,求點自點運動至點時,點所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一個圓柱體污水管道的橫截面,管道中有部分污水,污水液面橫截面寬度(即長)為污水管道直徑為則弦所對圓周角的大小為_____________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,點從點出發(fā)以的速度沿折線運動,點從點出發(fā)以的速度沿運動,兩點同時出發(fā),當某一點運動到點時,兩點同時停止運動設(shè)運動時間為的面積為關(guān)于的函數(shù)圖像由兩段組成,如圖2所示.
(1)求的值;
(2)求圖2中圖像段的函數(shù)表達式;
(3)當點運動到線段上某一段時,的面積大于當點在線段上任意一點時的面積,求的取值范圍.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“普洱茶”是云南有名的特產(chǎn),某網(wǎng)店專門銷售某種品牌的普洱茶,成本為30元/盒,每天銷售(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天該種普洱茶的銷售量不低于240盒,該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出500元給扶貧基金會,當銷售單價為多少元時,每天獲取的凈利潤最大,最大凈利潤是多少?(注:凈利潤=總利潤-捐款)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線上有點、、、、,且,,,,分別過點、、、、作直線的垂線,交軸于點、、、、,依次連接、、、、,得到,,,,,則的面積為_______.(用含有正整數(shù)的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com