【題目】已知,AB是⊙O的直徑,點C在⊙O上,點PAB延長線上一點,連接CP

(1)如圖1,若∠PCB=∠A

①求證:直線PC是⊙O的切線;

②若CPCAOA2,求CP的長;

(2)如圖2,若點M是弧AB的中點,CMAB于點N,MNMC9,求BM的值.

【答案】(1) ①見解析;②2;(2)3.

【解析】

(1)①由等腰三角形的性質(zhì)和圓周角定理可得OCCP,即可得出結(jié)論;

根據(jù)圓周角定理及三角形內(nèi)角和定理得出∠P=30°,根據(jù)30°角所對直角邊等于斜邊的一半即可得出結(jié)論;

(2)根據(jù)圓周角定理可證AMC∽△NMA,再根據(jù)相似三角形的對應(yīng)邊成比例即可得出結(jié)論

1)①∵OA=OC,∴∠A=∠ACO

∵∠PCB=∠A,∴∠ACO=∠PCB

AB是⊙O的直徑,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OCCP

OC是⊙O的半徑,∴PC是⊙O的切線.

②∵CP=CA,∴∠P=∠A,∴∠COB=2A=2P

∵∠OCP=90°,∴∠P=30°.

OC=OA=2,∴OP=2OC=4,∴PC==;

2)連接MA、MB

∵點M是弧AB的中點,∴AM=BM,∴∠ACM=∠BAM

∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MCMN

MCMN=9,∴AM=3,∴BM=AM=3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直角坐標系中直線 AB x 軸正半軸、y 軸正半軸交于 A,B 兩點,已知 B(0,4),∠BAO=30°,P,Q 分別是線段 OB,AB 上的兩個動點,P O 出發(fā)以每秒 3 個單位長度的速度向終點 B 運動,Q B 出發(fā)以每秒 8 個單位長度的速度向終點 A 運動,兩點同時出發(fā),當其中一點到達終點時整個運動結(jié)束,設(shè)運動時間為 t(秒).

(1)求線段 AB 的長,及點 A 的坐標;

(2)t 為何值時,△BPQ 的面積為

(3) C OA 的中點,連接 QCQP,以 QC,QP 為鄰邊作平行四邊形 PQCD,

t 為何值時,點 D 恰好落在坐標軸上;

②是否存在時間 t 使 x 軸恰好將平行四邊形 PQCD 的面積分成 13 的兩部分,若存在,直接寫出 t 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

(1)求yx之間的函數(shù)表達式;

(2)設(shè)商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系xOy中,已知頂點為P(0,2)的二次函數(shù)圖象與x軸交于A,B兩點,點A的坐標為(2,0).

(1)求該二次函數(shù)的解析式,并寫出點B的坐標;

(2)點C在該二次函數(shù)的圖象上,且在第四象限,當△ABC的面積為12時,求點C的坐標;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了有效地落實國家精準扶貧政策,切實關(guān)愛貧困家庭學(xué)生.某校對全校各班貧困家庭學(xué)生的人數(shù)情況進行了調(diào)查.發(fā)現(xiàn)每個班級都有貧困家庭學(xué)生,經(jīng)統(tǒng)計班上貧困家庭學(xué)生人數(shù)分別有1名、2名、3名、5名,共四種情況,并將其制成了如下兩幅不完整的統(tǒng)計圖:

(1)填空:a = ,b= ;

(2)求這所學(xué)校平均每班貧困學(xué)生人數(shù);

(3)某愛心人士決定從2名貧困家庭學(xué)生的這些班級中,任選兩名進行幫扶,請用列表或畫樹狀圖的方法,求出被選中的兩名學(xué)生來自同一班級的概率.

貧困學(xué)生人數(shù)

班級數(shù)

1

5

2

2

3

a

5

1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的平分線相交于點,過點于點,交于點,過點于點,某班學(xué)生在一次數(shù)學(xué)活動課中,探索出如下結(jié)論,其中錯誤的是(

A.B.各邊的距離相等

C.D.設(shè),,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,以OA為半徑的圓分別交AB、AC于點E、D,在BC的延長線上取點F,使得BF=EF.

(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;

(2)若∠A=30°,求證:DG=DA;

(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC⊥BD,且AC=8,BD=4,各邊中點分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為(

A. B. C. D. 不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)足球進校園的號召,我縣教體局在今年 11 月份組織了縣長杯校園足球比賽.在某場比賽中,一個球被從地面向上踢出,它距地面的高度 h(m)可用公式 h=﹣5t2+v0t 表示,其中 t(s)表示足球被踢出后經(jīng)過的時間,v0(m/s)是足球被踢出時的速度,如果足球的最大高度到 20m,那么足球被踢出時的速度應(yīng)達到________m/s.

查看答案和解析>>

同步練習(xí)冊答案