【題目】已知拋物線y=ax2+2x﹣3經(jīng)過(guò)點(diǎn)(1,3)
(1)求a的值;
(2)當(dāng)x=3時(shí),求y的值;
(3)求這個(gè)拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo).

【答案】
(1)解:∵拋物線y=ax2+2x﹣3經(jīng)過(guò)點(diǎn)(1,3),

∴a×12+2×1﹣3=3,

∴a=4


(2)解:由(1)得拋物線y=4x2+2x﹣3,

當(dāng)x=3時(shí),得y=4×32+2×3﹣3=39


(3)解:∵y=4x2+2x﹣3=4(x+ 2 ,

∴拋物線對(duì)稱軸為x=﹣ ,頂點(diǎn)坐標(biāo)為(﹣ ,﹣


【解析】(1)把點(diǎn)的坐標(biāo)代入可得到關(guān)于a的值,可求得a;(2)把x=3代入函數(shù)解析式可求得y的值;(3)把拋物線解析式化為頂點(diǎn)式可求得其對(duì)稱軸和頂點(diǎn)坐標(biāo).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用二次函數(shù)的性質(zhì),掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A﹣2,2),B﹣3,﹣2

1)若點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,則點(diǎn)C的坐標(biāo)為   

2)將點(diǎn)A向右平移5個(gè)單位得到點(diǎn)D,則點(diǎn)D的坐標(biāo)為   

3)由點(diǎn)A,B,C,D組成的四邊形ABCD內(nèi)(不包括邊界)任取一個(gè)橫、縱坐標(biāo)均為整數(shù)的點(diǎn),求所取的點(diǎn)橫、縱坐標(biāo)之和恰好為零的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(﹣2,0)和點(diǎn)B,與y軸相交于點(diǎn)C,頂點(diǎn)D(1,﹣

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求四邊形ACDB的面積;
(3)若平移(1)中的拋物線,使平移后的拋物線與坐標(biāo)軸僅有兩個(gè)交點(diǎn),請(qǐng)直接寫出一個(gè)平移后的拋物線的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作△BOC,使△BOC△ABO全等,則點(diǎn)C坐標(biāo)為_____________.(點(diǎn)C不與點(diǎn)A重合)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2﹣bx+c經(jīng)過(guò)A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)則b= , c=
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過(guò)點(diǎn)C,求平移后所得拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c經(jīng)過(guò)(1,3),(4,0).
(1)求該拋物線的解析式;
(2)求該拋物線與x軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃一次性購(gòu)買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購(gòu)買2個(gè)排球和3個(gè)籃球共需340元.

(1)求每個(gè)排球和籃球的價(jià)格:

(2)若該校一次性購(gòu)買排球和籃球共60個(gè),總費(fèi)用不超過(guò)3800元,且購(gòu)買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.

①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;

②在學(xué)校按怎樣的方案購(gòu)買時(shí),費(fèi)用最低?最低費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).

(1)在圖中作出ABC關(guān)于y軸對(duì)稱的△A1B1C1

(2)寫出點(diǎn)C1的坐標(biāo)(直接寫答案):C1   ;

(3)△A1B1C1的面積為   

(4)在y軸上畫出點(diǎn)P,使PB+PC最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)EEF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.

1)求∠F的度數(shù);

2)若CD=2,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案