【題目】如圖1,在矩形紙片中,,,將紙片沿對角線對折,點(diǎn)落在點(diǎn)處.
(1)的大小是 ;
(2)如圖2,將折疊后的紙片沿著剪開,把繞點(diǎn)逆時針旋轉(zhuǎn)角(),得到,點(diǎn)分別對應(yīng)點(diǎn),交于點(diǎn),交于點(diǎn).
①當(dāng)時,求證:;
②當(dāng)點(diǎn)落在邊上時,連接,則的值為 ;
③在②的條件下,將沿折疊至處,點(diǎn)對應(yīng)點(diǎn),交于點(diǎn),則線段的長度為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校一課外小組準(zhǔn)備進(jìn)行“綠色環(huán)保”的宣傳活動,需要印刷一批宣傳單,學(xué)校附近有甲、乙兩家印刷社,甲印刷社收費(fèi)y(元)與印數(shù)x(張)的函數(shù)關(guān)系是:y=0.15x;乙印刷社收費(fèi)y(元)與印數(shù)x(張)的函數(shù)關(guān)系如圖所示:
(1)寫出乙印刷社的收費(fèi)y(元)與印數(shù)x(張)之間的函數(shù)關(guān)系式;
(2)若該小組在甲、乙兩印刷社打印了相同數(shù)量的宣傳單共用去70元,則共打印多少張宣傳單?
(3)活動結(jié)束后,市民反映良好,興趣小組決定再加印1500張宣傳單,若在甲、乙印刷社中選一家,興趣小組應(yīng)選擇哪家印刷社比較劃算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實驗的結(jié)果
下面有三個推斷:
①當(dāng)拋擲次數(shù)是100時,計算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;
③若再次用計算機(jī)模擬此實驗,則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45.
其中合理的是( )
A.①B.②C.①②D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展課外體育活動,決定開展:籃球、乒乓球、踢毽子、跑步四種活動項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種).隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如下統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.
(1)樣本中最喜歡籃球項目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是 度;
(2)請把條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校有學(xué)生1000人,請根據(jù)樣本估計全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、D依次在同一條直線上,點(diǎn)E、F分別在直線AD的兩側(cè),已知BE∥CF,∠A=∠D,AE=DF.
(1)求證:四邊形BFCE是平行四邊形;
(2)填空:若AD=7,AB=2.5,∠EBD=60°,當(dāng)四邊形BFCE是菱形時,菱形BFCE的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=-x(x-2)(0≤x≤2)記為C1 ,它與x軸交于兩點(diǎn)O,A;將C1繞點(diǎn)A旋轉(zhuǎn)180°得到C2 , 交x軸于A1;將C2繞點(diǎn)A1旋轉(zhuǎn)180°得到C3 , 交x軸于點(diǎn)A2 . .....如此進(jìn)行下去,直至得到C2018 , 若點(diǎn)P(4035,m)在第2018段拋物線上,則m的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,拋物線的頂點(diǎn)為M,平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.
(1)①如圖2,求出拋物線y=x2的“完美三角形”斜邊AB的長;
②請寫出一個拋物線的解析式,使它的完美三角形與y=x2+1的“完美三角形”全等;
(2)若拋物線y=ax2+4的“完美三角形”的斜邊長為4,求a的值;
(3)若拋物線y=mx2+2x+n5的“完美三角形”斜邊長為n,且y=mx2+2x+n5的最大值為1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點(diǎn)P在AB的延長線上,弦CE交AB于點(diǎn),連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點(diǎn),C是OB的中點(diǎn),D是AB上一點(diǎn),四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com