【題目】如圖,點(diǎn)P在平行四邊形ABCD的邊BC上,將ABP沿直線AP翻折,點(diǎn)B恰好落在邊AD的垂直平分線上,如果AB5,AD8,tanB,那么BP的長(zhǎng)為_____

【答案】或7

【解析】

①如圖1,過(guò)AAHBCH,連接DB′,設(shè)AH4x,BH3x,根據(jù)勾股定理得到AB5x5,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AB′=AB5,AMDMAD4,∠AMN=∠HNM90°,根據(jù)勾股定理得到MB′=3,求得HNMN4,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

②如圖2,由①知,MN4MB′=3,BN7,求得NBNB′,推出點(diǎn)PN重合,得到BPBN7

①如圖1,過(guò)AAHBCH,連接DB′,

設(shè)BB′與AP交于E,

AD的垂直平分線交ADM,BCN,

tanB

∴設(shè)AH4x,BH3x

AB5x5,

x1,

AH4BH3,

∵將△ABP沿直線AP翻折,點(diǎn)B恰好落在邊AD的垂直平分線MN上,

AB′=AB5,AMDMAD4,∠AMN=∠HNM90°,

∴四邊形AHNM是正方形,MB′=3,

HNMN4

BN7BN1,

BB′=

BEBB′=,

∵∠BEP=∠BNB′=90°,∠PBE=∠BBN,

∴△BPE∽△BBN,

,

BP

②如圖2,由①知,MN4,MB′=3,BN7,

NBNB′,

∴點(diǎn)NBB′的垂直平分線上,

∵將△ABP沿直線AP翻折,點(diǎn)B恰好落在邊AD的垂直平分線上,

∴點(diǎn)P也在BB′的垂直平分線上,

∴點(diǎn)PN重合,

BPBN7

綜上所述,BP的長(zhǎng)為7

故答案為:7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AE平分BCE,則下列結(jié)論:是等邊三角形;;,其中正確的結(jié)論的序號(hào)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),作直線,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

1)求拋物線的解析式并寫(xiě)出其對(duì)稱(chēng)軸;

2為拋物線對(duì)稱(chēng)軸上一點(diǎn),當(dāng)是以為直角邊的直角三角形,求點(diǎn)坐標(biāo);

3)若軸上且位于點(diǎn)下方的一點(diǎn),為直線上的一點(diǎn),在第四象限的拋物線上是否存在一點(diǎn).使以為頂點(diǎn)的四邊形是菱形且為菱形對(duì)角線?若存在,請(qǐng)求出點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為等邊三角形,OBC的中點(diǎn),作⊙OAC相切于點(diǎn)D

1)求證:AB與⊙O相切;

2)延長(zhǎng)ACE,使得CEAC,連接BE交⊙O與點(diǎn)F、M,若AB4,求FM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)ab是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng),我們就稱(chēng)此函數(shù)是閉區(qū)間上的閉函數(shù)

1)反比例函數(shù)是閉區(qū)間上的閉函數(shù)嗎?請(qǐng)判斷并說(shuō)明理由;

2)若一次函數(shù)是閉區(qū)間上的閉函數(shù),求此函數(shù)的解析式;

3)若函數(shù)是閉區(qū)間上的閉函數(shù),求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角的余弦值為,點(diǎn)在射線上,,點(diǎn)的內(nèi)部,且,.過(guò)點(diǎn)的直線分別交射線、射線于點(diǎn)、.點(diǎn)在線段上(點(diǎn)不與點(diǎn)重合),且

1)如圖1,當(dāng)時(shí),求的長(zhǎng);

2)如圖2,當(dāng)點(diǎn)在線段上時(shí),設(shè),,求關(guān)于的函數(shù)解析式并寫(xiě)出函數(shù)定義域;

3)聯(lián)結(jié),當(dāng)相似時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小華設(shè)計(jì)了一個(gè)探索杠桿平衡的實(shí)驗(yàn):在一根勻質(zhì)的木桿中點(diǎn)O左側(cè)固定位置B處懸掛重物A,在中點(diǎn)O的右側(cè)用一個(gè)彈簧秤向下拉木桿,改變彈簧秤與點(diǎn)O的距離x(單位:厘米),觀察彈簧秤的示數(shù)y(單位:牛)的變化情況,實(shí)驗(yàn)數(shù)據(jù)記錄如下:

x(單位:厘米)

10

15

20

25

30

y(單位:牛)

30

20

15

12

10

1)請(qǐng)寫(xiě)出一個(gè)符合表格中數(shù)據(jù)x關(guān)于y的函數(shù)關(guān)系;

2)當(dāng)彈簧秤的示數(shù)為30牛時(shí),彈簧秤與點(diǎn)O的距離是多少厘米?隨著彈簧秤與O點(diǎn)的距離不斷減小,彈簧秤的示數(shù)將發(fā)生怎樣的變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD,AB=6,DAB=60°,AE分別交BC、BD于點(diǎn)E、F,CE=2,連接CF.以下結(jié)論:①∠BAF=BCF; ②點(diǎn)EAB的距離是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正確的有()

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角中,,,點(diǎn)是邊上一動(dòng)點(diǎn),連接,以點(diǎn)為中心,將線段順時(shí)針旋轉(zhuǎn)135°,得到線段,連接

1)依題意,補(bǔ)全圖形;

2)求證:

3)點(diǎn)在線段的延長(zhǎng)線上,點(diǎn)是點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn),寫(xiě)出的一個(gè)值,使得對(duì)任意的點(diǎn)總有,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案