【題目】探究:如圖1,直線、、兩兩相交,交點(diǎn)分別為點(diǎn)A、B、C,點(diǎn)D在線段上,過點(diǎn)D作交于點(diǎn)E,過點(diǎn)E作交于點(diǎn)F.若,求的度數(shù).請將下面的解答過程補(bǔ)充完整,并填空
解:∵,∴________.( )
∵,∴________( )
∴.(等量代換)
∵,∴________°.
應(yīng)用:如圖2,直線、、兩兩相交,交點(diǎn)分別為點(diǎn)A、B、C,點(diǎn)D在線段的延長線上,過點(diǎn)D作交于點(diǎn)E,過點(diǎn)E作交于點(diǎn)F.若,求的度數(shù),并仿照(1)進(jìn)行說明.
【答案】∠EFC;兩直線平行,內(nèi)錯(cuò)角相等;∠EFC;兩直線平行,同位角相等;60;120.
【解析】
探究:依據(jù)兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同位角相等,即可得到∠DEF=60°.
應(yīng)用:依據(jù)兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ),即可得到∠DEF=180°60°=120°.
探究:∵DE∥BC,
∴∠DEF=∠EFC.(兩直線平行,內(nèi)錯(cuò)角相等)
∵EF∥AB,
∴∠EFC=∠ABC.(兩直線平行,同位角相等)
∴∠DEF=∠ABC.(等量代換)
∵∠ABC=60°,
∴∠DEF=60°.
故答案為:∠EFC,兩直線平行,內(nèi)錯(cuò)角相等,∠EFC,兩直線平行,同位角相等,60;
應(yīng)用:∵DE∥BC,
∴∠ABC=∠ADE=60°.(兩直線平行,同位角相等)
∵EF∥AB,
∴∠ADE+∠DEF=180°.(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠DEF=180°60°=120°.
故答案為:120.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了豐富學(xué)生的校園生活,準(zhǔn)備購進(jìn)一批籃球和足球.其中籃球的單價(jià)比足球的單價(jià)多40元,用1500元購進(jìn)的籃球個(gè)數(shù)與900元購進(jìn)的足球個(gè)數(shù)相等.
(1)籃球和足球的單價(jià)各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(,0),(3,0).現(xiàn)將線段AB向上平移2個(gè)單位,再向右平移1個(gè)單位,得到線段AB的對應(yīng)線段CD,連接AC,BD.
(1)點(diǎn)C,D的坐標(biāo)分別為_______, ________,并求出四邊形ABDC的面積S四邊形ABDC;
(2)在y軸上存在一點(diǎn)P,連接PA,PB,且S△PAB =S四邊形ABDC,求出滿足條件的所有點(diǎn)P的坐標(biāo).
(3)若點(diǎn)Q為線段BD上一點(diǎn)(不與B,D兩點(diǎn)重合),則的值______(填“變”或“不變”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如下圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)求出線段AB,曲線CD的解析式,并寫出自變量的取值范圍;
(2)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)競賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:E是∠AOB的平分線上一點(diǎn),EC⊥OA ,ED⊥OB ,垂足分別為C、D求證:(1)△OED≌△OEC (2)∠ECD=∠EDC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,.點(diǎn)是射線上一動點(diǎn)(與點(diǎn)不重合),、分別平分和、分別交射線于點(diǎn),.
(1)①的度數(shù)是________;
②,________;
(2)求的度數(shù);
(3)當(dāng)點(diǎn)運(yùn)動時(shí),與之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(1,0),C(3,0),D(3,4).以A為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)C.動點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動.同時(shí)動點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動.點(diǎn)P,Q的運(yùn)動速度均為每秒1個(gè)單位.運(yùn)動時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)過點(diǎn)E作EF⊥AD于F,交拋物線于點(diǎn)G,當(dāng)t為何值時(shí),△ACG的面積最大?最大值為多少?
(3)在動點(diǎn)P,Q運(yùn)動的過程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以C,Q,E,H為頂點(diǎn)的四邊形為菱形?請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠DAE=∠B,∠DAB=∠C,則下列結(jié)論不成立的是( )
A.AD∥BCB.AB∥CDC.∠DAB+∠B=180°D.∠B=∠C
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com