【題目】解方程:

14x28x+10;

27x5x+2)=65x+2);

33x2+52x+1)=0

4xx1)=2

【答案】1x11+,x21;(2x1=﹣,x2;(3x1,x2;(4x12,x2=﹣1

【解析】

(1)根據(jù)配方法解一元二次方程即可;

(2)根據(jù)因式分解法解一元二次方程即可;

(3)根據(jù)公式法解一元二次方程即可;

(4)根據(jù)十字相乘法解一元二次方程即可.

解:(14x28x+10

x22x=﹣,

x22x+1=﹣+1,即(x12,

x1±

x11+,x21

27x5x+2)=65x+2

7x5x+2)﹣65x+2)=0,

5x+2)(7x6)=0

5x+207x60,

x1=﹣,x2;

33x2+52x+1)=0

3x2+10x+50,

a3,b10,c51004×3×540,

x,

x1x2;

4xx1)=2

x2x20,

x2)(x+1)=0,

x20x+10,

x12,x2=﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,其邊長為2,點(diǎn)A,點(diǎn)C分別在軸,軸的正半軸上.函數(shù)的圖象與CB交于點(diǎn)D,函數(shù)為常數(shù),)的圖象經(jīng)過點(diǎn)D,與AB交于點(diǎn)E,與函數(shù)的圖象在第三象限內(nèi)交于點(diǎn)F,連接AF、EF.

(1)求函數(shù)的表達(dá)式,并直接寫出E、F兩點(diǎn)的坐標(biāo).

(2)求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰△ABC中,ABAC10cm,BC16cm.點(diǎn)D由點(diǎn)A出發(fā)沿AB方向向點(diǎn)B勻速運(yùn)動,同時(shí)點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動,它們的速度均為1cm/s.連接DE,設(shè)運(yùn)動時(shí)間為ts)(0t10),解答下列問題:

1)當(dāng)t為何值時(shí),△BDE的面積為7.5cm2;

2)在點(diǎn)DE的運(yùn)動中,是否存在時(shí)間t,使得△BDE與△ABC相似?若存在,請求出對應(yīng)的時(shí)間t;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,tanBcosDAC.

1求證:ACBD;

2sin C,BC12,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中放入一個(gè)矩形紙片ABCO,將紙片翻折后,點(diǎn)B恰好落在軸上,記為,折痕為CE.直線CE的關(guān)系式是,與軸相交于點(diǎn)F,且AE=3.

(1)求OC長度;

(2)求點(diǎn)的坐標(biāo);

(3)求矩形ABCO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C90°AC3,BC4,若以點(diǎn)C為圓心,r為半徑,且⊙C與斜邊AB有唯一公共點(diǎn),求半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景如圖,在四邊形ADBC中,∠ACB∠ADB90°,ADBD,探究線段AC、BC、CD之間的數(shù)量關(guān)系.

小吳同學(xué)探究此問題的思路是:將ΔBCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°到ΔAED處,點(diǎn)B、C分別落在點(diǎn)A、E處如圖),易證點(diǎn)C、A、E在同一條直線上,并且ΔCDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.

  圖①      圖②        圖④

簡單應(yīng)用:

(1)在圖①中,若AC=,BC2,則CD .

2如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上弧AD=弧BD,若AB=13,BC12,求CD的長.

拓展延伸:

(3)如圖,∠ACB∠ADB90°,ADBD,ACm,BCnm<n,求CD的長(用含m,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(1)班課外活動小組利用標(biāo)桿測量學(xué)校旗桿的高度,已知標(biāo)桿高度CD3m,標(biāo)桿與旗桿的水平距離BD15m,人的眼睛與地面的高度EF1.6m,人與標(biāo)桿CD的水平距離DF2m,求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC,ABC=90°,以直角邊AB為直徑作⊙O,交斜邊AC于點(diǎn)D,連接BD

1)若AD=3,BD=4,求邊BC的長;

2)取BC的中點(diǎn)E,連接ED,試證明ED與⊙O相切.

查看答案和解析>>

同步練習(xí)冊答案