【題目】在平面直角坐標(biāo)系中,直線yx+2x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線yax2+bx+ca0)經(jīng)過(guò)點(diǎn)AB

1)求a、b滿足的關(guān)系式及c的值.

2)當(dāng)x0時(shí),若yax2+bx+ca0)的函數(shù)值隨x的增大而增大,求a的取值范圍.

3)如圖,當(dāng)a=﹣1時(shí),在拋物線上是否存在點(diǎn)P,使PAB的面積為1?若存在,請(qǐng)求出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1b2a+1,c2;(2a0;(3)存在,點(diǎn)P(﹣1,2)或(﹣1+,1)或(﹣1,﹣),理由見(jiàn)解析

【解析】

1)求出點(diǎn)A、B的坐標(biāo),將其代入yax2+bx+c即可求解;

2)當(dāng)時(shí),若yax2+bx+c)的函數(shù)值隨x的增大而增大,則函數(shù)對(duì)稱軸x,而,即可求解;

3)過(guò)點(diǎn)P作直線lAB,作PQy軸交BA于點(diǎn)Q,作PHAB于點(diǎn)H,SPAB×AB×PH×2×PQ×1,則|yPyQ|1,即可求解.

1yx+2,令x0,則y2,令y0,則x=﹣2,

故點(diǎn)AB的坐標(biāo)分別為(﹣2,0)、(0,2),則c2,

則函數(shù)表達(dá)式為:yax2+bx+2,

將點(diǎn)A坐標(biāo)代入上式并整理得:b2a+1

2)當(dāng)x0時(shí),若yax2+bx+ca0)的函數(shù)值隨x的增大而增大,

則函數(shù)對(duì)稱軸x≥0,而b2a+1,

即:≥0,解得:,

a的取值范圍為:a0;

3)當(dāng)a=﹣1時(shí),二次函數(shù)表達(dá)式為:y=﹣x2x+2,

過(guò)點(diǎn)P作直線lAB,作PQy軸交BA于點(diǎn)Q,作PHAB于點(diǎn)H,

OAOB,∴∠BAO=∠PQH45°,

SPAB×AB×PH×2×PQ×1

yPyQ1,

在直線AB下方作直線m,使直線ml與直線AB等距離,

則直線m與拋物線兩個(gè)交點(diǎn)坐標(biāo),分別與點(diǎn)AB組成的三角形的面積也為1,

故:|yPyQ|1,

設(shè)點(diǎn)Px,﹣x2x+2),則點(diǎn)Qx,x+2),

即:﹣x2x+2x2±1,

解得:x=﹣1,

故點(diǎn)P(﹣1,2)或(﹣1+1)或(﹣1,﹣).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形紙片ABCD邊長(zhǎng)為2,折疊∠B和∠D,使兩個(gè)直角的頂點(diǎn)重合于對(duì)角線BD上的一點(diǎn)PEF、GH分別是折痕(圖2),設(shè)AE=x0x2),給出下列判斷:①x=時(shí),EF+ABAC;②六邊形AEFCHG周長(zhǎng)的值為定值;③六邊形AEFCHG面積為定值,其中正確的是( 。

A.①②B.①③C.D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知∠BAC=36°△A1B1A2,△A2B2A3,△A3B3A4,,△AnBnAn+1都是頂角為36°的等腰三角形,即∠A1B1A2=∠A2B2A3=∠A3B3A4=…=∠AnBnAn+1=36°,點(diǎn)A1A2,A3,,An在射線AC上,點(diǎn)B1,B2B3,,Bn在射線AB上,若A1A2=1,則線段A2018A2019的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)EBC的中點(diǎn),AEBD交于點(diǎn)P,FCD上一點(diǎn),連接AF分別交BD,DE于點(diǎn)M,N,且AFDE,連接PN,則以下結(jié)論中:①FCD的中點(diǎn);②3AM=2DE;③tanEAF;④;⑤△PMN∽△DPE,正確的結(jié)論個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某出租公司有若干輛同一型號(hào)的貨車對(duì)外出租,每輛貨車的日租金實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計(jì),淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.

1)該出租公司這批對(duì)外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?

2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會(huì)減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時(shí),該出租公司的日租金總收入最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)為(1,﹣4),且過(guò)點(diǎn)(2,5)

1)求拋物線的解析式;

2)根據(jù)函數(shù)圖象,直接寫出y0時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB2,點(diǎn)ECD的中點(diǎn),連接AE,將△ADE沿AE折疊至△AHE,連接BH,延長(zhǎng)AE,BH交于點(diǎn)FBF,CD交于點(diǎn)G,則FG=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了維護(hù)海洋權(quán)益,新組建的國(guó)家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時(shí)發(fā)現(xiàn)一艘不明國(guó)籍的船只停在C處海域。如圖所示,AB=60海里,在B處測(cè)得C在北偏東45的方向上,A處測(cè)得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測(cè)得AD=120海里。

(1)分別求出A與C及B與C的距離AC,BC(結(jié)果保留根號(hào))

(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,途中有無(wú)觸礁的危險(xiǎn)?                         

(參考數(shù)據(jù):=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng),中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的漢字聽(tīng)寫大賽.為了解本次大賽的成績(jī),學(xué)校德育處隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:

成績(jī)x(分)分?jǐn)?shù)段

頻數(shù)(人)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

0.2

80≤x<90

m

0.35

90≤x<100

50

n

頻數(shù)分布直方圖

根據(jù)所給的信息,回答下列問(wèn)題:

1m=________;n=________;

2)補(bǔ)全頻數(shù)分布直方圖;

3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在________分?jǐn)?shù)段;

4)若成績(jī)?cè)?/span>90分以上(包括90分)為優(yōu)等,請(qǐng)你估計(jì)該校參加本次比賽的2000名學(xué)生中成績(jī)是優(yōu)等的約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案