【題目】中華文明,源遠(yuǎn)流長,中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,學(xué)校德育處隨機(jī)抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
成績x(分)分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
頻數(shù)分布直方圖
根據(jù)所給的信息,回答下列問題:
(1)m=________;n=________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會落在________分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的2000名學(xué)生中成績是“優(yōu)”等的約有多少人?
【答案】(1)70;0.25;(2)補(bǔ)圖見解析;(3)80≤x<90;(4)500人
【解析】
(1)根據(jù)第一組的頻數(shù)是10,頻率是0.05,求得數(shù)據(jù)總數(shù),再用數(shù)據(jù)總數(shù)乘以第四組頻率可得m的值,用第五組頻數(shù)除以數(shù)據(jù)總數(shù)可得n的值;
(2)根據(jù)(1)的計算結(jié)果即可補(bǔ)全頻數(shù)分布直方圖;
(3)根據(jù)中位數(shù)的定義,將這組數(shù)據(jù)按照從小到大的順序排列后,處于中間位置的數(shù)據(jù)(或中間兩數(shù)據(jù)的平均數(shù))即為中位數(shù);
(4)利用總數(shù)2000乘以“優(yōu)”等學(xué)生的所占的頻率即可.
(1)樣本容量為10÷0.05=200,
則m=200×0.35=70,n=50÷200=0.25;
(2)補(bǔ)全直方圖如下:
(3)這200名學(xué)生成績的中位數(shù)會落在80≤x<90分?jǐn)?shù)段,
故答案為:80≤x<90;
(4)該校參加本次比賽的2000名學(xué)生中成績是“優(yōu)”等的約有:2000×0.25=500(人).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與坐標(biāo)軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運(yùn)動,同時動點P從點A出發(fā)向點O做勻速運(yùn)動,當(dāng)點P、Q其中一點停止運(yùn)動時,另一點也停止運(yùn)動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運(yùn)動時間為t秒,在運(yùn)動過程中四邊形PEFQ總為矩形(點P、Q重合除外).
(1)求點P運(yùn)動的速度是多少?
(2)當(dāng)t為多少秒時,矩形PEFQ為正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:拋物線y=a(x+1)(x﹣3)與x軸相交于A、B兩點,與y軸的交于點C(0,﹣3).
(1)求拋物線的解析式的一般式.
(2)若拋物線上有一點P,滿足∠ACO=∠PCB,求P點坐標(biāo).
(3)直線l:y=kx﹣k+2與拋物線交于E、F兩點,當(dāng)點B到直線l的距離最大時,求△BEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】西昌市數(shù)科科如局從2013年起每年對全市所有中學(xué)生進(jìn)行“我最喜歡的陽光大課間活動”抽樣調(diào)查(被調(diào)查學(xué)生每人只能選一項),并將抽樣調(diào)查的數(shù)據(jù)繪制成圖1、圖2兩幅統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解答下列問題:
(1) 年抽取的調(diào)查人數(shù)最少; 年抽取的調(diào)查人數(shù)中男生、女生人數(shù)相等;
(2)求圖2中“短跑”在扇形圖中所占的圓心角α的度數(shù);
(3)2017年抽取的學(xué)生中,喜歡羽毛球和短跑的學(xué)生共有多少人?
(4)如果2017年全市共有3.4萬名中學(xué)生,請你估計我市2017年喜歡乒乓球和羽毛球兩項運(yùn)動的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點O位于坐標(biāo)原點,斜邊AB垂直于x軸,頂點A在函數(shù)y1=(x>0)的圖象上,頂點B在函數(shù)y2= (x>0)的圖象上,∠ABO=30°,則=( )
A.-3 B.3 C. D.-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xoy中,二次函數(shù)的圖象與x軸的交點為A,B,頂點為C,點D為點C關(guān)于x軸的對稱點,過點A作直線l:交BD于點E,連接BC的直線交直線l于K點.
(1)問:在四邊形ABKD內(nèi)部是否存在點P,使它到四邊形ABKD四邊的距離都相等?
若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
(2)若M,N分別為直線AD和直線l上的兩個動點,連結(jié)DN,NM,MK,如圖2,求DN+NM+MK和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)()的圖象與x軸交于A(﹣2,0)、B(8,0)兩點,與y軸交于點B,其對稱軸與x軸交于點D.
(1)求該二次函數(shù)的解析式;
(2)如圖1,連結(jié)BC,在線段BC上是否存在點E,使得△CDE為等腰三角形?若存在,求出所有符合條件的點E的坐標(biāo);若不存在,請說明理由;
(3)如圖2,若點P(m,n)是該二次函數(shù)圖象上的一個動點(其中m>0,n<0),連結(jié)PB,PD,BD,求△BDP面積的最大值及此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點的坐標(biāo)分別為A(10,0)、C(0,3),直線與BC相交于點D,拋物線y=ax2+bx經(jīng)過A、D兩點.
(1)求拋物線的解析式;
(2)連接AD,試判斷△OAD的形狀,并說明理由.
(3)若點P是拋物線的對稱軸上的一個動點,對稱軸與OD、x軸分別交于點M、N,問:是否存在點P,使得以點P、O、M為頂點的三角形與△OAD相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com