【題目】如圖,在Rt△ABC中,∠ABC=90o,以BC為直徑的半圓⊙O交AC于點D,點E是AB的中點,連接DE并延長,交CB延長線于點F.
(1)判斷直線DF與⊙O的位置關(guān)系,并說明理由;
(2)若CF=8,DF=4,求⊙O的半徑和AC的長.
【答案】(1)相切,證明見解析;(2).
【解析】
(1)連接OD,OE,證明△OBE≌△ODE,得到∠ODE=∠OBE=90°即OD⊥DE,從而得出結(jié)論;
(2)首先設(shè)⊙O半徑為x,運用勾股定理得到方程,解方程可得圓的半徑;證明△FBE∽△FDO,得出BE=,由點E是AB中點,得出AB的長,再由勾股定理得出AC的長.
(1)相切
證明:連接OD,OE
∵點E是AB中點,點O是BC中點
∴OE是△ABC的中位線,
∴OE∥AC
∴∠1=∠4,∠2=∠3
∵OC=OD,
∴∠3=∠4,
∴∠1=∠2
∵OB=OD,OE=OE,
∴△OBE≌△ODE
∴∠ODE=∠OBE=90o
∴OD⊥DE,
∴直線DF與⊙O相切.
(2)設(shè)⊙O半徑為x,則OD=x,OF=8-x
在Rt△FOD中,,
∴,
∴x=3
∴⊙O半徑為3
∵∠FBE=∠FDO=90°,∠F=∠F,
∴△FBE∽△FDO,
∴,
∵BF=FC-BC=2,OD=3,DF=4,
∴BE=,
∵點E是AB中點,
∴AB=2BE=3
在Rt△ABC中,AC==
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A在第一象限,軸于B點,連結(jié),將折疊,使點落在x軸上,折痕交邊于D點,交斜邊于E點,(1)若A點的坐標為,當時,點的坐標是______;(2)若與原點O重合,,雙曲線的圖象恰好經(jīng)過D,E兩點(如圖2),則____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司試銷一種成本單價為50元/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于80元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元/件)可近似看作一次函數(shù)y=kx+b的關(guān)系(如圖所示)
(I)根據(jù)圖象,求一次函數(shù)y=kx+b的解析式,并寫出自變量x的取值范圍;
(Ⅱ)該公司要想每天獲得最大的利潤,應(yīng)把銷售單價定為多少?最大利潤值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校初三學生上周末使用手機的情況(選項:A.聊天;B.學習;C.購物;D.游戲;E.其他),隨機抽查了該校初三若干名學生,對其上周末使用手機的情況進行統(tǒng)計(每個學生只選一個選項),繪制了統(tǒng)計表和條形統(tǒng)計圖.
選項 | 人數(shù) | 頻率 |
A | 15 | 0.3 |
B | 10 | m |
C | 5 | 0.1 |
D | n | |
E | 5 | 0.1 |
根據(jù)以上信息回答下列問題:
(1)這次調(diào)查的樣本容量是 ;
(2)統(tǒng)計表中m= ,n= ,補全條形統(tǒng)計圖;
(3)若該校初三有540名學生,請估計該校初三學生上周末利用手機學習的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑的半圓O內(nèi)有一條弦AC,點E是弦AC的中點,連接BE,并延長交半圓O于點D,若OB=2,OE=1,則∠CDE的度數(shù)是_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD,AD=6,AB=8,點P為BC邊上的中點,點Q是△ACD的內(nèi)切圓圓O上的一個動點,點M是CQ的中點,則PM的最大值是( )
A.﹣1B.+1C.3.2D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線,頂點為A,且經(jīng)過點,點.
(1)求拋物線的解析式;
(2)如圖1,直線AB與x軸相交于點M,y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;
(3)如圖2,點Q是折線A﹣B﹣C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN1,若點N1落在x軸上,請直接寫出Q點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以△ABC的邊AC和BC為腰向外作等腰直角△DAC和等腰直角△EBC,連接DE.
(1)求證:△DAC∽△EBC;
(2)求△ABC與△DEC的面積比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)與x軸的一個交點坐標為(2,0),對稱軸是直線x=1,其圖象的一部分如圖所示,對于下列說法:其中正確的是( 。
①拋物線過原點:
②a﹣b+c<0:
③2a+b+c=0;
④拋物線頂點為(1,):
⑤當x<1時,y隨x的增大而增大
A.①②③B.①③④C.①④⑤D.③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com