【題目】某公司試銷一種成本單價為50元/件的新產品,規(guī)定試銷時銷售單價不低于成本單價,又不高于80元/件,經試銷調查,發(fā)現銷售量y(件)與銷售單價x(元/件)可近似看作一次函數y=kx+b的關系(如圖所示)
(I)根據圖象,求一次函數y=kx+b的解析式,并寫出自變量x的取值范圍;
(Ⅱ)該公司要想每天獲得最大的利潤,應把銷售單價定為多少?最大利潤值為多少?
【答案】(1)y=﹣x+100(50≤x≤80);(2)銷售單價定為75元/件,最大利潤為625元.
【解析】
(1)根據題意,利用待定系數法求一次函數的解析式即可;(2)設每天獲得的利潤為W元,構建利潤W與銷售單價x的二次函數模型,根據二次函數的性質即可求解.
解:(1)由函數的圖象得:,
解得:,
∴所以y=﹣x+100(50≤x≤80);
(2)設每天獲得的利潤為W元,
由(1)得:W=(x﹣50)y=(x﹣50)(﹣x+100)=﹣x2+150x﹣5000=﹣(x﹣75)2+625,
∵﹣1<0,
∴當x=75時,W最大=625即該公司要想第天獲得最大利潤,應把銷售單價為75元/件,最大利潤為625元.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D、E為BC上的點,AD平分∠BAE,CA=CD.
(1)求證:∠CAE=∠B;
(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當的降價措施。經調查發(fā)現,每件商品每降價1元,商場平均每天可多售出2件。設每件商品降價元。據此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形中,是邊上一點,
(1)將繞點按順時針方向旋轉。使、重合,得到,如圖(a)所示.觀察可知:與相等的線段是__________,__________.
(2)如圖(b)所示,正方形中,、分別是、邊上的點,且,試通過旋轉的方式說明:.
(3)在(2)的條件下,連接分別交、于點、,如圖(c)所示.判斷、、之間的關系,直接寫出結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,線段AB的兩個端點坐標分別為(﹣2,1)和(2,3).
(1)在圖中分別畫出線段AB關于x軸的對稱線段A1B1,并寫出A1、B1的坐標.
(2)在x軸上找一點C,使AC+BC的值最小,在圖中作出點C,并直接寫出點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在利用構造全等三角形來解決的問題中,有一種典型的利用倍延中線的方法,例如:在△ABC中,AB=8,AC=6,點D是BC邊上的中點,怎樣求AD的取值范圍呢?我們可以延長AD到點E,使AD=DE,然后連接BE(如圖①),這樣,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下來,在△ABE中通過AE的長可求出AD的取值范圍.
請你回答:
(1)在圖①中,中線AD的取值范圍是 .
(2)應用上述方法,解決下面問題
①如圖②,在△ABC中,點D是BC邊上的中點,點E是AB邊上的一點,作DF⊥DE交AC邊于點F,連接EF,若BE=4,CF=2,請直接寫出EF的取值范圍.
②如圖③,在四邊形ABCD中,∠BCD=150°,∠ADC=30°,點E是AB中點,點F在DC上,且滿足BC=CF,DF=AD,連接CE、ED,請判斷CE與ED的位置關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=48°,∠BAC的平分線與線段AB的垂直平分線OD交于點O.連接OB、OC,將∠ACB沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC為_____度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,∠BAD=120°,AC平分∠BAD,AC與BD相交于E點,下列結論錯誤的是( 。
A. △BDC為等邊三角形 B. ∠AED=∠ABC
C. △ABE∽△DBA D. BC2=CECA
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買,兩種型號的污水處理設備共10臺.已知用90萬元購買型號的污水處理設備的臺數與用75萬元購買型號的污水處理設備的臺數相同,每臺設備價格及月處理污水量如下表所示:
污水處理設備 | 型 | 型 |
價格(萬元/臺) | ||
月處理污水量(噸/臺) | 220 | 180 |
(1)求的值;
(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過156萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com