【題目】麗君花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時,超過20盆部分的繡球花價格打8折.
(1)分別寫出兩種花卉的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;
(2)為了美化環(huán)境,花園小區(qū)計劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時,總費用最少,最少費用是多少元?
【答案】
(1)
【解答】解:太陽花的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式是:y=6x;
①一次購買的繡球花不超過20盆時,
付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式是:y=10x(x≤20);
②一次購買的繡球花超過20盆時,
付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式是:
y=10×20+10×0.8×(x﹣20)
=200+8x﹣160
=8x+40
綜上,可得
繡球花的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式是:
y=
(2)
根據(jù)題意,可得太陽花數(shù)量不超過:90×=30,
所以繡球花的數(shù)量不少于:90﹣30=60(盆),
設(shè)太陽花的數(shù)量是x盆,則繡球花的數(shù)量是90﹣x盆,購買兩種花的總費用是y元,
則x≤30,
則y=6x+[8(90﹣x)+40]
=760﹣2x
因為x≤30,
所以當(dāng)x=30時,
ymin=760﹣2×30=700(元),
即太陽花30盆,繡球花60盆時,總費用最少,最少費用是700元.
答:太陽花30盆,繡球花60盆時,總費用最少,最少費用是700元.
【解析】(1)首先根據(jù)總價=單價×數(shù)量,求出太陽花的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;然后分兩種情況:①一次購買的繡球花不超過20盆;②一次購買的繡球花超過20盆;根據(jù)總價=單價×數(shù)量,求出繡球花的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式即可.
(2)首先太陽花數(shù)量不超過繡球花數(shù)量的一半,可得太陽花數(shù)量不超過兩種花數(shù)量的,即太陽花數(shù)量不超過30盆,所以繡球花的數(shù)量不少于60盆;然后設(shè)太陽花的數(shù)量是x盆,則繡球花的數(shù)量是90﹣x盆,根據(jù)總價=單價×數(shù)量,求出購買兩種花的總費用是多少,進(jìn)而判斷出兩種花卉各買多少盆時,總費用最少,最少費用是多少元即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】釣魚島自古就是中國的領(lǐng)土,中國有關(guān)部門已對釣魚島及其附屬島嶼開展常態(tài)化監(jiān)視監(jiān)測.一日,中國一艘海監(jiān)船從A點沿正北方向巡航,其航線距釣魚島(設(shè)M,N為該島的東西兩端點)最近距離為14.4km(即MC=14.4km).在A點測得島嶼的西端點M在點A的北偏東42°方向;航行4km后到達(dá)B點,測得島嶼的東端點N在點B的北偏東56°方向,(其中N,M,C在同一條直線上),求釣魚島東西兩端點MN之間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是某用戶銀行存折中2012年11月到2013年5月間代扣電費的相關(guān)數(shù)據(jù),從中可以看出扣繳電費最多的一次達(dá)到( 。
A.147.40元
B.143.17元
C.144.23元
D.136.83元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批同型號的彩電,第一個月售出50臺,為了減少庫存,第二個月每臺降價500元將這批彩電全部售出,兩個月的銷售量的比是9:10,已知第一個月的銷售額與第二個月的銷售額相等,這兩個月銷售總額超過40萬元.
(1)求第一個月每臺彩電銷售價格;
(2)這批彩電最少有多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別是AB、CD的中點.
(1)求證:四邊形EBFD為平行四邊形;
(2)對角線AC分別與DE、BF交于點M、N,求證:△ABN≌△CDM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P是⊙O外一點,Q是⊙O上的動點,線段PQ的中點為M,連接OP,OM.若⊙O的半徑為2,OP=4,則線段OM的最小值是( 。
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)初二年級抽取部分學(xué)生進(jìn)行跳繩測試.并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳90~99次的為及格;每分鐘跳100~109次的為中等;每分鐘跳110~119次的為良好;每分鐘跳120次及以上的為優(yōu)秀.測試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:
(1)參加這次跳繩測試的共有 人;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“中等”部分所對應(yīng)的圓心角的度數(shù)是 °;
(4)如果該校初二年級的總?cè)藬?shù)是480人,根據(jù)此統(tǒng)計數(shù)據(jù),請你估算該校初二年級跳繩成績?yōu)椤皟?yōu)秀”的人數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com