【題目】某商場銷售一批同型號的彩電,第一個月售出50臺,為了減少庫存,第二個月每臺降價500元將這批彩電全部售出,兩個月的銷售量的比是9:10,已知第一個月的銷售額與第二個月的銷售額相等,這兩個月銷售總額超過40萬元.
(1)求第一個月每臺彩電銷售價格;
(2)這批彩電最少有多少臺?
【答案】
(1)
【解答】解:設(shè)第一個月每臺彩電售價為x元,則第二個月每臺彩電售價為(x﹣500)元,依題意有
9x=10(x﹣500),
解得x=5000.
答:第一個月每臺彩電售價為5000元.
(2)
設(shè)這批彩電有y臺,依題意有
5000×50+(5000﹣500)(y﹣50)>400000,
解得y>,
∵y為整數(shù),
∴y≥84.
答:這批彩電最少有84臺.
【解析】(1)可設(shè)第一個月每臺彩電售價為x元,則第二個月每臺彩電售價為(x﹣500)元,根據(jù)等量關(guān)系:第一個月的銷售額與第二個月的銷售額相等,列出方程求解即可;
(2)設(shè)這批彩電有y臺,根據(jù)不等關(guān)系:這兩個月銷售總額超過40萬元,列出不等式求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯誤的是( )
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.S△ADH=S△CEG
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,凈水器悄然走進(jìn)千家萬戶,某商場從廠家購進(jìn)了A,B兩種型號的凈水器,已知A型比B型凈水器每臺進(jìn)價多了300元,用7500元購進(jìn)A型凈水器和用6000元購進(jìn)B型凈水器的臺數(shù)相同.
(1)求每臺A型凈水器和每臺B型凈水器的進(jìn)價分別是多少元?
(2)為了增大B型凈水器的銷量,商場決定對B型凈水器進(jìn)行降價銷售,經(jīng)市場調(diào)查,當(dāng)每臺B型凈水器售價為1800元時,每天可賣出4臺,在此基礎(chǔ)上,售價每降低50元,每天將多售出1臺,問將每臺B型凈水器的定價為多少元時,商家每天銷售B型凈水器的獲得的利潤最大?最大為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,AD與△ABC的外接圓⊙O恰好相切于點(diǎn)A,邊CD與⊙O相交于點(diǎn)E,連接AE,BE.
(1)求證:AB=AC;
(2)若過點(diǎn)A作AH⊥BE于H,求證:BH=CE+EH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F為對角線AC上的兩點(diǎn),且AE=CF,連接DE、BF.
(1)寫出圖中所有的全等三角形;
(2)求證:DE∥BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面問題:2+22+23+24+…+22015﹣1的末位數(shù)字是( )
A.0
B.3
C.4
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麗君花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時,超過20盆部分的繡球花價格打8折.
(1)分別寫出兩種花卉的付款金額y(元)關(guān)于購買量x(盆)的函數(shù)解析式;
(2)為了美化環(huán)境,花園小區(qū)計劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時,總費(fèi)用最少,最少費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A和點(diǎn)B(﹣2,n),與x軸交于點(diǎn)C(﹣1,0),連接OA.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點(diǎn)P在坐標(biāo)軸上,且滿足PA=OA,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,關(guān)于x的二次函數(shù)y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣3,0),點(diǎn)C(0,3),點(diǎn)D為二次函數(shù)的頂點(diǎn),DE為二次函數(shù)的對稱軸,E在x軸上.
(1)求拋物線的解析式;
(2)DE上是否存在點(diǎn)P到AD的距離與到x軸的距離相等?若存在求出點(diǎn)P,若不存在請說明理由;
(3)如圖2,DE的左側(cè)拋物線上是否存在點(diǎn)F,使2S△FBC=3S△EBC?若存在求出點(diǎn)F的坐標(biāo),若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com