【題目】問(wèn)題背景:某數(shù)學(xué)興趣小組把兩個(gè)等腰直角三角形的直角頂點(diǎn)重合,發(fā)現(xiàn)了一些有趣的結(jié)論.
結(jié)論一:
(1)如圖1,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,連接BD,CE,試說(shuō)明△ADB≌△AEC;
結(jié)論二:
(2)如圖2,在(1)的條件下,若點(diǎn)E在BC邊上,試說(shuō)明DB⊥BC;
應(yīng)用:
(3)如圖3,在四邊形ABCD中,∠ABC=∠ADC=90°,AB=CB,∠BAD+∠BCD=180°,連接BD,BD=7cm,求四邊形ABCD的面積.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)S四邊形ABCD=24.5(cm2).
【解析】
(1)根據(jù)全等三角形的判定SAS進(jìn)行證明即可得到答案;
(2)根據(jù)全等三角形的性質(zhì)和三角形內(nèi)角和定理進(jìn)行計(jì)算,即可得到答案;
(3)作BE⊥BD,交DC的延長(zhǎng)線(xiàn)于點(diǎn)E,根據(jù)三角形內(nèi)角和和全等三角形的判定定理(ASA),即可得到答案.
(1)∵∠BAC=∠DAE=90°,
∴∠BAE+∠CAE=∠BAE+∠BAD,
∴∠CAE=∠BAD,
又∵AB=AC,AD=AE,
∴△ADB≌△AEC(SAS);
(2)由(1)得△ADB≌△AEC,
∴∠C=∠ABD,
又∵∠ABC+∠C=90°,
∴∠ABC+∠ABD=90°,
∴DB⊥BC;
(3)作BE⊥BD,交DC的延長(zhǎng)線(xiàn)于點(diǎn)E,
∵BE⊥BD,
∴∠CBE+∠DBC=90°,
又∵∠ABD+∠DBC=90°,
∴∠ABD=∠EBC,
∵∠BAD+∠BCD=180°,
∠BCE+∠BCD=180°,
∴∠BAD=∠BCE,
又∵BA=BC,
∴△BAD≌△BCE(ASA),
∴BD=BE,且S△BAD=S△BCE,
∴S四邊形ABCD=S△ABD+S△DBC
=S△BCE+S△BCD
=S△BDE
=×7×7=24.5(cm2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點(diǎn)D,點(diǎn)E在上,連接DE,AE,連接CE并延長(zhǎng)交AB于點(diǎn)F,∠AED=∠ACF.
(1)求證:CF⊥AB;
(2)若CD=4,CB=4,cos∠ACF=,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填寫(xiě)推理理由,將過(guò)程補(bǔ)充完整:
如圖,,.求證:.
證明:∵(已知),
∴___________(______________________________).
∵(已知),
∴_________(如果兩條直線(xiàn)都與第三條直線(xiàn)平行,那么這兩條直線(xiàn)也互相平行).
∴__________=(_________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高市民的環(huán)保意識(shí),倡導(dǎo)“節(jié)能減排,綠色出行”,某市計(jì)劃在城區(qū)投放一批“共享單車(chē)”,這批單車(chē)分為A、B兩種不同款型,其中A型車(chē)單價(jià)400元,B型車(chē)單價(jià)320元.
(1)今年年初,“共享單車(chē)”試點(diǎn)投放在某市中心城區(qū)正式啟動(dòng),投放A、B兩種款型的單車(chē)共100輛,總價(jià)值36800元.求本次試點(diǎn)投放的A型車(chē)、B型車(chē)的輛數(shù).
(2)試點(diǎn)投放活動(dòng)得到了廣大市民的認(rèn)可,該市決定將此項(xiàng)公益活動(dòng)在整個(gè)城區(qū)全面鋪開(kāi).按照試點(diǎn)投放中A、B兩車(chē)型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬(wàn)元.問(wèn)整個(gè)城區(qū)全面鋪開(kāi)時(shí)投放的A型車(chē)、B型車(chē)至少多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:己知:對(duì)于實(shí)數(shù)a≥0,b≥0,滿(mǎn)足a+b≥2,當(dāng)且僅當(dāng)a = b時(shí),等號(hào)成立,此時(shí)取得代數(shù)式a+b的最小值.
根據(jù)以上結(jié)論,解決以下問(wèn)題:
(1)拓展:若a>0,當(dāng)且僅當(dāng)a=___時(shí),a+有最小值,最小值為____;
(2)應(yīng)用:
①如圖1,已知點(diǎn)P為雙曲線(xiàn)y=(x>0)上的任意一點(diǎn),過(guò)點(diǎn)P作PA⊥x軸,PB丄y軸,四邊形OAPB的周長(zhǎng)取得最小值時(shí),求出點(diǎn)P的坐標(biāo)以及周長(zhǎng)最小值:
②如圖2,已知點(diǎn)Q是雙曲線(xiàn)y=(x>0)上一點(diǎn),且PQ∥x軸, 連接OP、OQ,當(dāng)線(xiàn)段OP取得最小值時(shí),在平面內(nèi)取一點(diǎn)C,使得以0、P、Q、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,點(diǎn) A( 2,2)、B(0,1)點(diǎn) P 在 x 軸上,且△PAB 的等腰三角形,則滿(mǎn)足條件的點(diǎn) P 共有()個(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,直線(xiàn)AB、CD相交于點(diǎn)O,OE⊥OC,OF平分∠AOE.
(1)若,則∠AOF的度數(shù)為______;
(2)若,求∠BOC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆時(shí)針旋轉(zhuǎn)一定角度后與△ADE重合,且點(diǎn)C恰好成為AD中點(diǎn),如圖
(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)角的度數(shù).
(2)求出∠BAE的度數(shù)和AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知AB是圓O的直徑,圓O過(guò)BC的中點(diǎn)D,且DE⊥AC.
(1)求證:DE是圓O的切線(xiàn);
(2)若∠C=30°,CD=10cm,求圓O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com