【題目】如圖,已知點A是反比例函數(shù)y=的圖象在第一象限上的動點,連結AO并延長交另一分支于點B,以AB為邊作等邊△ABC使點C落在第二象限,且邊BC交x軸于點D,若△ACD與△ABD的面積之比為1:2,則點C的坐標為__.
【答案】(﹣6,).
【解析】
作CM⊥OD于M,AE⊥OD于E,作DF⊥AB于F,連接CO,根據(jù)等高的三角形的面積比等于底邊的比,可得DB=2CD,由△ABC是等邊三角形,且AO=BO可得CO⊥AB,CO=AO=BO,由DF∥CO可得OF=OB,DF=OB,根據(jù)△AOE∽△DOF 可得AE=2OE,根據(jù)AE×OE=2,可求A點坐標,再根據(jù)△CMO∽△AOE 可求C點坐標.
如圖,作CM⊥OD于M,AE⊥OD于E,作DF⊥AB于F,連接CO,
根據(jù)題意得:AO=BO
∵S△ACD:S△ADB=1:2
∴CD:DB=1:2即DB=2CD
∵△ABC為等邊三角形且AO=BO
∴∠CBA=60°,CO⊥AB且DF⊥AB
∴DF∥CO
∴,
∴DF=CO,BF=BO,即FO=BO
∵∠CBA=60°,CO⊥AB
∴CO=BO,
∴DF=BO
∵∠DOF=∠AOE,∠DFO=∠AEO=90°
∴△DFO∽△AOE
∴,
∴AE=2OE
∵點A是反比例函數(shù)y=的圖象在第一象限上的動點
∴AE×OE=2,
∴AE=2,OE=1
∵∠COM+∠AOE=90°,∠AOE+∠EAO=90°
∴∠COM=∠EAO,且∠CMO=∠AEO=90°
∴△COM∽△AOE
,
∴CM=,MO=6
且M在第二象限
∴C(-6,)
故答案為:(-6,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=-x+b與反比例函數(shù)y=(x>0)的圖象交于點A(2,6)和點B(m,1)
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)點E為y軸上一個動點,若S△AEB=5,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結論:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2<﹣1,則y1>y2,⑤abc>0.其中正確結論的個數(shù)是( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直徑,⊙O交BC于點D,DE⊥AC于點E,BE交⊙O于點F,連接AF,AF的延長線交DE于點P.
(1)求證:DE是⊙O的切線;
(2)求tan∠ABE的值;
(3)若OA=2,求線段AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(14分)如圖,已知拋物線()與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,過點B的直線與對角線AC、邊AD分別交于點E和F.過點E作EG∥BC,交AB于G,則圖中相似三角形有( )
A. 4對B. 5對C. 6對D. 7對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P點在AC上(與A、C不重合),Q在BC上.
(1)當△PQC的面積與四邊形PABQ的面積相等時,求CP的長;
(2)當△PQC的周長與四邊形PABQ的周長相等時,求CP的長;
(3)試問:在AB上是否存在一點M,使得△PQM為等腰直角三角形?若不存在,請簡要說明理由;若存在,請求出PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點D.點E、F分別在邊AB、AC上,且BE=AF,FG∥AB交線段AD于點G,連接BG、EF.
(1)求證:四邊形BGFE是平行四邊形;
(2)若△ABG∽△AGF,AB=10,AG=6,求線段BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com