【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C方向運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)M作MN⊥AM交CD于點(diǎn)N,設(shè)點(diǎn)M的運(yùn)動(dòng)路程為x,CN=y,圖2表示的是y與x的函數(shù)關(guān)系的大致圖象,則矩形ABCD的面積是( )
A.20B.18C.10D.9
【答案】A
【解析】
由圖2知:AB+BC=9,設(shè)AB=m,則BC=9-m,則tan∠MAB=tan∠NMC,即,即,化簡得:y=-x2+x-9,當(dāng)x=-=時(shí),y=-9+=,即可求解.
由圖2知:AB+BC=9,設(shè)AB=m,則BC=9﹣m,
如圖所示,當(dāng)點(diǎn)M在BC上時(shí),
則AB=m,BM=x﹣a,MC=9﹣x,NC=y,
∵MN⊥AM,則∠MAB=∠NMC,
tan∠MAB=tan∠NMC,即,
即,化簡得:y=-x2+x-9,
當(dāng)x=﹣=時(shí),
y=﹣9+=,
解得:m=5,
則AM=5,BC=4,
故ABCD的面積=20,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O為△ADB的外接圓,DH⊥AB于點(diǎn)H,現(xiàn)將△AHD沿AD翻折得到△AED,AE交⊙O于點(diǎn)C,連接OC交AD于點(diǎn)G.
(1)求證:DE是⊙O的切線;
(2)若AB=10,求線段OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠CAB=90°,AB=AC,點(diǎn)A在y軸上,BC∥x軸,點(diǎn)B.將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的△AB′C′,當(dāng)點(diǎn)B′落在x軸的正半軸上時(shí),點(diǎn)C′的坐標(biāo)為( 。
A.(﹣,﹣1)B.(﹣,﹣1)
C.(﹣,+1)D.(﹣,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在邊BC和CD上,且BE=CF,連接AE、BF,其相交于點(diǎn)G,將△BCF沿BF翻折得到△BC′F,延長FC′交BA延長線于點(diǎn)H.
(1)①求證:AE=BF;
②猜想AE與BF的位置關(guān)系,并證明你的結(jié)論;
(2)若AB=3,EC=2BE,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是等邊△ACD的外接圓,AB是⊙O的直徑,過點(diǎn)B作⊙O的切線BM,延長AD交BM于點(diǎn)E.
(1)求證:CD∥BM;(2)連接OE,若DE=4,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C(﹣2,0),點(diǎn)A的縱坐標(biāo)為6,AC=3CB.
(1)求反比例函數(shù)的解析式;
(2)請(qǐng)直接寫出不等式組<kx+b<4的解集;
(3)點(diǎn)P(x,y)是直線y=k+b上的一個(gè)動(dòng)點(diǎn),且滿足(2)中的不等式組,過點(diǎn)P作PQ⊥y軸交y軸于點(diǎn)Q,若△BPQ的面積記為S,求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+b與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B(0,﹣2),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)C(6,m).
(1)求直線和反比例函數(shù)的表達(dá)式;
(2)連接OC,在x軸上找一點(diǎn)P,使△OPC是以OC為腰的等腰三角形,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)結(jié)合圖象,請(qǐng)直接寫出不等式≥ax+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,,以為坐標(biāo)原點(diǎn),以所在的直線為軸建立平面直角坐標(biāo)系,如圖.按以下步驟作圖:①分別以點(diǎn),為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn),;②作直線交于點(diǎn).則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com