【題目】如圖,在一張矩形紙片ABCD中,AD=4cm,點(diǎn)E,F(xiàn)分別是CD和AB的中點(diǎn),現(xiàn)將這張紙片折疊,使點(diǎn)B落在EF上的點(diǎn)G處,折痕為AH,若HG延長(zhǎng)線恰好經(jīng)過點(diǎn)D,則CD的長(zhǎng)為( )
A.2cm
B.2 cm
C.4cm
D.4 cm
【答案】B
【解析】解:∵點(diǎn)E,F(xiàn)分別是CD和AB的中點(diǎn), ∴EF⊥AB,
∴EF∥BC,
∴EG是△DCH的中位線,
∴DG=HG,
由折疊的性質(zhì)可得:∠AGH=∠ABH=90°,
∴∠AGH=∠AGD=90°,
在△AGH和△AGD中,
,
∴△ADG≌△AHG(SAS),
∴AD=AH,∠DAG=∠HAG,
由折疊的性質(zhì)可得:∠BAH=∠HAG,
∴∠BAH=∠HAG=∠DAG= ∠BAD=30°,
在Rt△ABH中,AH=AD=4,∠BAH=30°,
∴HB=2,AB=2 ,
∴CD=AB=2 .
故選:B.
先證明EG是△DCH的中位線,繼而得出DG=HG,然后證明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,并解答問題.
材料:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.
解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵對(duì)應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+這樣,分式被拆分成了一個(gè)整式x2+2與一個(gè)分式的和.
解答:
(1)將分式 拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.
(2)試說明的最小值為8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=40°,分別以AB,AC為邊作兩個(gè)等腰三角形ABD和ACE,且AB=AD,AC=AE,∠BAD=∠CAE=90°.
(1)求∠DBC的度數(shù).
(2)求證:BD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖每格一個(gè)單位),描出下列各點(diǎn)A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(xiàn)(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次將各點(diǎn)連接起來,觀察所描出的圖形,它像什么?根據(jù)圖形回答下列問題:
(1)圖形中哪些點(diǎn)在坐標(biāo)軸上,它們的坐標(biāo)有什么特點(diǎn)?
(2)線段FD和x軸有什么位置關(guān)系?點(diǎn)F和點(diǎn)D的坐標(biāo)有什么特點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BF與AD相交于E.若AD=BD,BE=AC,BC=8cm,DC=3cm,則AE=_____,∠BFC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知2x﹣y=8,求代數(shù)式[x2+y2﹣(x﹣y)2+2y(x﹣y)]÷4y的值.
(2)閱讀下列材料:常用分解因式的方法有提取公因式法、公式法,但有部分多項(xiàng)式只單純用上述方法就無(wú)法分解,如x2﹣2xy+y2﹣16,我們細(xì)心觀察這個(gè)式子就會(huì)發(fā)現(xiàn),前三項(xiàng)符合完全平方公式,進(jìn)行變形后可以與第四項(xiàng)結(jié)合再運(yùn)用平方差公式進(jìn)行分解.過程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4)這種分解因式的方法叫分組分解法.利用這種分組的思想方法解決下列問題:
已知a,b,c分別是△ABC三邊的長(zhǎng),且2a2+b2+c2﹣2a(b+c)=0請(qǐng)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E、F同時(shí)由A、C兩點(diǎn)出發(fā),分別沿AB、CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過t秒△DEF為等邊三角形,則t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°,點(diǎn)D是斜邊AB的中點(diǎn),DE∥BC,且CE=CD.
(1)求證:∠B=∠DEC;
(2)求證:四邊形ADCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對(duì)角線 AC 與 BD 相交于點(diǎn) O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( )
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com