【題目】如圖,在矩形ABCD中,AB=4,BC=3,點(diǎn)P是邊AB上的一動(dòng)點(diǎn),連接DP,

1)若將△DAP沿DP折疊,點(diǎn)A落在矩形的對(duì)角線上點(diǎn)A處,試求AP的長;

2)點(diǎn)P運(yùn)動(dòng)到某一時(shí)刻,過點(diǎn)P作直線PEBC于點(diǎn)E,將△DAP△PBE分別沿DPPE折疊,點(diǎn)A與點(diǎn)B分別落在點(diǎn)AB處,若P,A,B三點(diǎn)恰好在同一直線上,且AB=2,試求此時(shí)AP的長.

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到邊AB的中點(diǎn)處時(shí),過點(diǎn)P作直線PGBC于點(diǎn)G,將△DAP△PBG分別沿DPPG折疊,點(diǎn)A與點(diǎn)B重合于點(diǎn)F處,請(qǐng)直接寫出FBC的距離.

【答案】1;(213;(3

【解析】

1)分兩種情形:①當(dāng)點(diǎn)在對(duì)角線上時(shí),設(shè),則,利用勾股定理進(jìn)行求解;②當(dāng)點(diǎn)在對(duì)角線上時(shí),利用相似三角形的性質(zhì)進(jìn)行求解;

2設(shè),則,分兩種情形分別構(gòu)建方程進(jìn)行求解;

3FHCDH,作FIBCI,設(shè)BGFGx,在RtGCD中運(yùn)用勾股定理得出x的值,根據(jù)FHCG求出FH的長,即可得出GI的長,最后在RtFGI中運(yùn)用勾股定理進(jìn)行求解.

解:(1)①當(dāng)點(diǎn)在對(duì)角線上時(shí),如圖1,

,

,

由折疊性質(zhì),,,,

設(shè),則

,

,

解得,,

;

②當(dāng)點(diǎn)在對(duì)角線上時(shí),如圖2

根據(jù)折疊的性質(zhì)可知,

,

,

,

長為;

2)①如圖3,設(shè),則,根據(jù)折疊的性質(zhì)可知:

,,

,

②如圖4,設(shè),則,

根據(jù)折疊性質(zhì)可知:,

,

,

,

長為13;

3如圖5,作FHCDH,作FIBCI,

根據(jù)折疊性質(zhì)可知:ADDF3,BGGFG、F、D三點(diǎn)共線,設(shè)BGFGx,

RtGCD中,,

解得,,

DGDF+FG,CGBCBG

FHCG,

,

∵易知四邊形FICH為矩形,

FHIC,

,

∴在RtFGI中,,

FBC的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC90°,以AB為直徑的OAB于點(diǎn)D,點(diǎn)EBC的中點(diǎn),連接OD、DE

1)求證:ODDE

2)若∠BAC30°,AB12,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC60°,垂直于x軸的直線ly軸出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M、N(點(diǎn)M在點(diǎn)N的上方).

1)求A、B兩點(diǎn)的坐標(biāo);

2)設(shè)△OMN的面積為S,直線l運(yùn)動(dòng)時(shí)間為t秒(0t6),試求St的函數(shù)表達(dá)式;

3)在題(2)的條件下,是否存在某一時(shí)刻,使得△OMN的面積與OABC的面積之比為34?如果存在,請(qǐng)求出t的取值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于兩點(diǎn),與軸交于點(diǎn)連接

1)求反比例函數(shù)的解析式;

2)若點(diǎn)軸上,且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園音樂之聲“結(jié)束后,王老師整理了所有參賽選手的比賽成績(單位:分),繪制成如下頻數(shù)直方圖和扇形統(tǒng)計(jì)圖:

1)求本次比賽參賽選手總?cè)藬?shù),并補(bǔ)全頻數(shù)直方圖;

2)求扇形統(tǒng)計(jì)圖中扇形E的圓心角度數(shù);

3)成績在E區(qū)域的選手中,男生比女生多一人,從中隨機(jī)選取兩人,求恰好選中兩名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAOD是⊙O半徑.過A作⊙O的切線,交∠AOD的平分線于點(diǎn)C,連接CD,延長AO交⊙O于點(diǎn)E,交CD的延長線于點(diǎn)B

(1)求證:直線CD是⊙O的切線;

(2)如果D點(diǎn)是BC的中點(diǎn),⊙O的半徑為 3cm,求的長度.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=2x+b與反比例函數(shù)y=的(k0)圖象交于點(diǎn)A,過點(diǎn)AABx軸于點(diǎn)B,點(diǎn)D為線段AC的中點(diǎn),BDy軸于點(diǎn)E

1)若k=8,且點(diǎn)A的橫坐標(biāo)為1,求b的值;

2)已知△BEC的面積為4,則k的值為多少?

3)在(2)的條件下,已知點(diǎn)E為△ABC的重心,且OE=2,求直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科技改變生活,手機(jī)導(dǎo)航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達(dá)A地后,導(dǎo)航顯示車輛應(yīng)沿北偏西60方向行駛8千米至B地,再沿北偏東45°方向行駛一段距離到達(dá)古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求BC兩地的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=1.且過點(diǎn),有下列結(jié)論:

abc0; a2b+4c=0; 25a10b+4c=0; 3b+2c0; ab≥mamb);

其中所有正確的結(jié)論是______.(填寫正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊答案