【題目】如圖,點E在DF上,點B在AC上,∠1=∠2,∠C=∠D.
試說明:AC∥DF.將過程補充完整.
解:∵∠1=∠2()
∠1=∠3()
∴∠2=∠3()
∴∥()
∴∠C=∠ABD ()
又∵∠C=∠D()
∴∠D=∠ABD()
∴AC∥DF()
【答案】已知;對頂角相等;等量代換;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;已知;等量代換;內(nèi)錯角相等,兩直線平行
【解析】解:∵∠1=∠2( 已知),
∠1=∠3( 對頂角相等),
∴∠2=∠3( 等量代換),
∴BD∥CE( 同位角相等,兩直線平行),
∴∠C=∠ABD ( 兩直線平行,同位角相等),
又∵∠C=∠D( 已知),
∴∠D=∠ABD( 等量代換),
∴AC∥DF( 內(nèi)錯角相等,兩直線平行),
所以答案是:已知;對頂角相等;等量代換;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;已知;等量代換;內(nèi)錯角相等,兩直線平行.
【考點精析】通過靈活運用平行線的判定與性質(zhì),掌握由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質(zhì)即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F(xiàn)是AB邊上的中點,點D、E分別在邊AC、BC邊上,且AD=CE,連接DE、DF、EF.
(1)求證:△ADF≌△CEF;
(2)試判斷△DFE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線y=2x2向右平移2個單位,能得到的拋物線是( )
A.y=2x2+2
B.y=2x2﹣2
C.y=2(x+2)2
D.y=2(x﹣2)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a,b滿足|a﹣4|+ =0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.
(1)點B的坐標為 , 當點P移動3.5秒時,點P的坐標;
(2)在移動過程中,當點P到x軸的距離為4個單位長度時,求點P移動的時間;
(3)在移動過程中,當△OBP的面積是10時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一次測量活動中,小麗站在離樹底部E處5m的B處仰望樹頂C,仰角為30°,已知小麗的眼睛離地面的距離AB為1.65m,那么這棵樹大約有多高?(結果精確到0.1m,參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級一班數(shù)學興趣小組在一次活動中進行了探究試驗活動,請你和他們一起活動吧.
(1)【探究與發(fā)現(xiàn)】 如圖1,AD是△ABC的中線,延長AD至點E,使ED=AD,連接BE,寫出圖中全等的兩個三角形
(2)【理解與應用】 填空:如圖2,EP是△DEF的中線,若EF=5,DE=3,設EP=x,則x的取值范圍是
(3)已知:如圖3,AD是△ABC的中線,∠BAC=∠ACB,點Q在BC的延長線上,QC=BC,求證:AQ=2AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣x+4與兩坐標軸分別相交于點A,B兩點,點C是線段AB上任意一點,過C分別作CD⊥x軸于點D,CE⊥y軸于點E.雙曲線 與CD,CE分別交于點P,Q兩點,若四邊形ODCE為正方形,且 ,則k的值是( )
A.4
B.2
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com