【題目】已知四邊形中,,分別是、邊上的點,交于點

1)如圖1,若四邊形是正方形,且,求證:;

2)如圖2,若四邊形是菱形,試探究當滿足什么關系,使得;

3)如圖3,,試判斷的數(shù)量關系,請說明理由.

【答案】1)見解析.(2)滿足時,,理由見解析.

3,理由見解析.

【解析】

1)由四邊形ABCD為正方形,利用正方形的性質得到一對角為直角,相等,且AD=DC,利用同角的余角相等得到一對角相等,利用AAS得到三角形ADP與三角形DCQ全等,利用全等三角形對應邊相等即可得證;(2)滿足時,,在AD的延長線上取點M,使CM=CQ,利用平行線的性質,以及同角(或等角)的補角相等得到三角形ADP與三角形DCM相似,利用相似三角形對應邊成比例即可得證.(3)由(2)問的啟示,構建出相同情境下的圖形,把轉化到(2)中角的已知條件上,利用同位置的相似三角形可得結論.

1)證明:∵四邊形ABCD是正方形, ∴∠A=ADC=90°,AD=DC

∴∠ADP+APD=90°, DPCQ ∴∠ADP+CQD=90°, ∴∠APD=CQD,

∴△ADP≌△DCQ DP=CQ;

2)滿足時,

理由如下:如圖,延長ADM,使CM=CQ,則

ABCD, ∴∠A=CDM,

ADBC, ∴∠B+A=180°,∴∠QGP+A=180°,

∴∠APD=CQM=CMQ,

∴△ADP∽△DCM,

,

3,理由如下:

如圖,ACBD相交于G,延長DAN,使BC=DN,又

所以四邊形BNDC為平行四邊形,所以

因為,,所以,

因為,所以

延長ADM,使CM=CA,

結合(2)得:,

所以:,因為,

所以,所以

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀)如圖1,四邊形中,,,經過點的直線將四邊形分成兩部分,直線所成的角設為,將四邊形的直角沿直線折疊,點落在點處,我們把這個操作過程記為

(理解)若點與點重合,則這個操作過程為[__________,__________];

         

(嘗試)

1)若點恰為的中點(如圖2),求;

2)經過操作,點落在處,若點在四邊形的邊(如圖3),求出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,如果點,點為某個菱形的一組對角的頂點,且點在直線上,那么稱該菱形為點的“伴隨菱形”,下圖為點的“伴隨菱形”的一個示意圖.

已知點的坐標為(1,1),點的坐標為

1)點中,能夠成為點的“伴隨菱形”的頂點的是__________________

2)如果四邊形是點的“伴隨菱形”.

①當點的坐標為時,求四邊形的面積;

②當四邊形中較小內角的度數(shù)為60°時,求四邊形的面積;

③當四邊形的面積為8,且與直線有公共點時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點,CEAB于E,設ABC=α(60°≤α<90°).

(1)當α=60°時,求CE的長;

(2)當60°<α<90°時,

是否存在正整數(shù)k,使得EFD=kAEF?若存在,求出k的值;若不存在,請說明理由.

連接CF,當CE2﹣CF2取最大值時,求tanDCF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的二次函數(shù)的圖象中,觀察得出了下面五條信息:

;②;③;④;⑤,

你認為其中正確信息的個數(shù)有__________________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;

(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】碼頭工人每天往一艘輪船上裝載貨物,平均每天裝載速度y(噸/元)與裝完貨物所需時間x(天)之間是反比例函數(shù)關系,其圖象如圖所示.

(1)求這個反比例函數(shù)的表達式;

(2)由于緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸貨多少噸?

(3)若碼頭原有工人10名,且每名工人每天的裝卸量相同,裝載完畢恰好用了8天時間,在(2)的條件下,至少需要增加多少名工人才能完成任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,M、N是BD的三等分點,連接CM并延長交AB于點E,連接EN并延長交CD于點F,以下結論:

①E為AB的中點;

②FC=4DF;

③SECF=

④當CEBD時,DFN是等腰三角形.

其中一定正確的是

查看答案和解析>>

同步練習冊答案