【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A.B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A,B,C,D的坐標(biāo);
(2)判斷以點A,C,D為頂點的三角形的形狀,并說明理由;
(3)點M( m,0)(﹣3<m<﹣1)為線段AB上一點,過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,得矩形PQNM,當(dāng)矩形PQMN的周長最大時,m的值是多少?并直接寫出此時△AEM的面積.
【答案】
(1)
解:由拋物線y+﹣x2﹣2x+3可得,當(dāng)x=0時,y=0,即C(0,3).
當(dāng)y=0,﹣x2﹣2x+3=0,解得,x=﹣3或x=l,令x=0,得y=3,
∴A(﹣3,0),B(1,0),C(0,3),
把y=﹣x2﹣2x+3化為頂點式為y=﹣(x+1)2+4,
∴D(﹣1,4)
(2)
解:結(jié)論:△ACD是直角三角形,理由如下,
連接CD、AD,設(shè)拋物線的對稱軸交AC于點H,過點C作CF⊥DH于點F,則F(﹣1,3).
由A(﹣3,0),C(0,3)得直線AC的解析式為y=x+3,
把x=﹣1代入y=x+3得,y=2,即H(﹣1,2),
∴DF=4﹣3=1,F(xiàn)H=3﹣2=1,
∴DF=FH=CF=1,
∴∠HCD=90°,
∴△ACD是直角三角形
(3)
解:由D(﹣1,4)可知,對稱軸為x=﹣1,
∵M(m,0),∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,
∴矩形PMNQ的周長=2(PM+MN)
=(﹣m2﹣2m+3﹣2m﹣2)×2
=﹣2m2﹣8m+2,
∵﹣2m2﹣8m+2=﹣2(m+2)2+10,
∴m=﹣2時,矩形的周長最大,
∵A(﹣3,0),C(0,3),設(shè)直線AC解析式為y=kx+b,
則 解得: ,
∴解析式y(tǒng)=x+3,當(dāng)x=﹣2時,則E(﹣2,1),
∴EM=1,AM=1,
∴S= AMEM= .
【解析】(1)通過解析式即可得出C點坐標(biāo),令y=0,解方程得出方程的解,即可求得A、B的坐標(biāo).(2)結(jié)論:△ACD是直角三角形.連接CD、AD,設(shè)拋物線的對稱軸交AC于點H,過點C作CF⊥DH于點F,只要證明DF=FH=CF即可解決問題.(3)設(shè)M點橫坐標(biāo)為m,則PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周長d=﹣2m2﹣8m+2,將﹣2m2﹣8m+2配方,根據(jù)二次函數(shù)的性質(zhì),即可得出m的值,然后求得直線AC的解析式,把x=m代入可以求得三角形的邊長,從而求得三角形的面積.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+ x+ 與x軸交于A,B兩點,與y軸交于點C.若點P是線段AC上方的拋物線上一動點,當(dāng)△ACP的面積取得最大值時,點P的坐標(biāo)是( )
A.(4,3)
B.(5, )
C.(4, )
D.(5,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣ x2+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標(biāo)為A(﹣2,0).
(1)求拋物線的解析式及它的對稱軸方程;
(2)求點C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)試判斷△AOC與△COB是否相似?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,請僅用無刻度的直尺,根據(jù)下列條件分別在圖1,圖2中畫出∠BAC的平分線(保留作圖痕跡,不寫作法).
(1)如圖1,P是BC邊的中點;
(2)如圖2,直線l與⊙O相切于點P,且l∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解當(dāng)?shù)貧鉁刈兓闆r,某研究小組記錄了寒假期間連續(xù)6天的最高氣溫,結(jié)果如下(單位:℃):﹣6,﹣3,x,2,﹣1,3,若這組數(shù)據(jù)的中位數(shù)是﹣1,在下列結(jié)論中:①方差是8;②極差是9;③眾數(shù)是﹣1;④平均數(shù)是﹣1,其中正確的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)如圖①,對△ABC作變換[60°, ]得△AB′C′,則S△AB′C′:S△ABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB′C′,使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分別是AD、CD的中點,連接BE、BF、EF.若四邊形ABCD的面積為6,則△BEF的面積為( )
A.2
B.
C.
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com