【題目】以下列各組數(shù)為三邊的三角形中不是直角三角形的是
A. 9、12、15 B. 41、40、9 C. 25、7、24 D. 6、5、4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O直徑DE=12,Rt△ABC中,BC=12,∠ACB=90°,∠ABC=30°.半圓O從左到右運動,在運動過程中,點D,E始終在直線BC上,半圓O在△ABC的左側(cè).
(1)當(dāng)△ABC的一邊與半圓O相切時,請畫出符合題意得圖形.
(2)當(dāng)△ABC的一邊與半圓O相切時,如果半圓O與直徑DE圍成的區(qū)域與△ABC的三邊圍成的區(qū)域有重疊部分,求重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個四邊形的三個內(nèi)角的度數(shù)依次如下選項,其中是平行四邊形的是
A. 88°,108°,88°. B. 88°,104°,108°.
C. 88°,92°,92° . D. 88°,92°,88°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題背景】
已知:l1∥l2∥l3∥l4,平行線l1與l2、l2與l3、l3與l4之間的距離分別為d1、d2、d3,且d1=d3=1,d2=2,我們把四個頂點分別在l1、l2、l3、l4這四條平行線上的四邊形稱為“格線四邊形”.
【問題探究】
(1)如圖1,正方形ABCD為“格線四邊形”,則正方形ABCD的邊長為 .
(2)矩形ABCD為“格線四邊形”,其長:寬=2:1,求矩形ABCD的寬.
【問題拓展】
(3)如圖1,EG過正方形ABCD的頂點D且垂直l1于點E,分別交l2,l4于點F,G,將∠AEG繞點A順時針旋轉(zhuǎn)30°,得到∠AE′D′(如圖2),點D′在直線l3上,以AD′為邊在E′D′左側(cè)作菱形AB′C′D′,使B′C′,分別在直線l2,l4上,求菱形AB′C′D′的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AB=2cm,動點P、Q分別從點A、C同時出發(fā),運動速度均為1cm/s,點P從點A出發(fā),沿A→B運動,到點B停止,點Q從點C出發(fā),沿C→A運動,到點A停止,連接BQ、CP相交于點D,設(shè)點P的運動時間為x(s).
(1)AP= (用含x的式子表示);
(2)求證:△ACP≌△CBQ;
(3)求∠PDB的度數(shù);
(4)當(dāng)CP⊥AB時,直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于點E.
(1)如圖1,連接EC,求證:△EBC是等邊三角形;
(2)點M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作∠BMG=60°,MG交DE延長線于點G.請你在圖2中畫出完整圖形,并直接寫出MD,DG與AD之間的數(shù)量關(guān)系;
(3)如圖3,點N是線段AD上的一點,以BN為一邊,在BN的下方作∠BNG=60°,NG交DE延長線于點G.試探究ND,DG與AD數(shù)量之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=45°,AD是BC邊上的高,E是AD上一點,ED=CD,連接EC,
求證:
(1)△ADC≌△BDE;
(2)EA=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(x+2)(2x-n)=2x2+mx-2,則( )
A. m=3,n=1; B. m=5,n=1; C. m=3,n=-1; D. m=5,n=-1;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com