【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)AB的中點(diǎn),DEAB交于點(diǎn)G,EFAC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:

①EFAC;四邊形ADFE為菱形;③AD=4AG;④FH=BD

其中正確結(jié)論的為______(請將所有正確的序號都填上).

【答案】①③④

【解析】試題分析:根據(jù)已知先判斷△ABC≌△EFA,則∠AEF=∠BAC,得出EF⊥AC,由等邊三角形的性質(zhì)得出∠BDF=30°,從而證得△DBF≌△EFA,則AE=DF,再由FE=AB,得出四邊形ADFE為平行四邊形而不是菱形,根據(jù)平行四邊形的性質(zhì)得出AD=4AG,從而得到答案.

解:∵△ACE是等邊三角形,

∴∠EAC=60°,AE=AC,

∵∠BAC=30°

∴∠FAE=∠ACB=90°,AB=2BC,

∵FAB的中點(diǎn),

∴AB=2AF,

∴BC=AF,

∴△ABC≌△EFA

∴FE=AB,

∴∠AEF=∠BAC=30°

∴EF⊥AC,故正確,

∵EF⊥AC,∠ACB=90°,

∴HF∥BC

∵FAB的中點(diǎn),

∴HF=BC,

∵BC=AB,AB=BD,

∴HF=BD,故說法正確;

∵AD=BD,BF=AF,

∴∠DFB=90°,∠BDF=30°,

∵∠FAE=∠BAC+∠CAE=90°,

∴∠DFB=∠EAF

∵EF⊥AC,

∴∠AEF=30°,

∴∠BDF=∠AEF,

∴△DBF≌△EFAAAS),

∴AE=DF,

∵FE=AB

四邊形ADFE為平行四邊形,

∵AE≠EF,

四邊形ADFE不是菱形;

說法不正確;

∴AG=AF,

∴AG=AB,

∵AD=AB

AD=4AG,故說法正確,

故答案為:①③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)y=ax2+bx+c的圖象中,王剛同學(xué)觀察得出了下面四條信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中錯誤的有(

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市有一塊長為(3a+b) 米,寬為(2a+b)米的長方形地塊,規(guī)劃部門計劃將陰影部分進(jìn)行綠化,中間將修建一座雕像.

(1)試用含a,b的代數(shù)式表示綠化的面積是多少平方米?

(2)若a=10,b=8,且每平方米造價為100元求出綠化需要多少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:是某出租車單程收費(fèi)y()與行駛路程x(千米)之間的函數(shù)關(guān)系圖象,根據(jù)圖象回答下列問題:

1當(dāng)行使8千米時,收費(fèi)應(yīng)為 元;

2從圖象上你能獲得哪些信息?(請寫出2)

________

____________________________

3求出收費(fèi)y()與行使x(千米)(x≥3)之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個正數(shù)的兩個平方根分別為a-22a-1,求a和這個數(shù)的算術(shù)平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=60°,P為AB上一點(diǎn), Q為BC延長線上一點(diǎn),且PA=CQ,連PQ交AC邊于D, PD=DQ,證明:△ABC為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:8a2b5÷(2ab22=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.                            

運(yùn)動員甲測試成績表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

7

5

8

7

8

7

(1)寫出運(yùn)動員甲測試成績的眾數(shù)和中位數(shù);

(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?(參考數(shù)據(jù):三人成績的方差分別為S2=0.8、S2=0.4、S2=0.8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2kx4是一個完全平方式,則整數(shù)k的值為_____

查看答案和解析>>

同步練習(xí)冊答案