【題目】如圖,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于點D,交△ABC的外接圓于點E,過點E作EF⊥BC交BC的延長線于點F.請補全圖形后完成下面的問題:
(1)求證:EF是△ABC外接圓的切線;
(2)若BC=5,sin∠ABC=,求EF的長.
【答案】(1)見解析 (2)6
【解析】
(1)根據(jù)已知條件得到△ABC的外接圓圓心O是斜邊AB的中點.連接OE,根據(jù)等腰三角形的性質和角平分線的定義得到∠1=∠3.求得OE∥BF.于是得到結論;
(2)根據(jù)三角函數(shù)的定義得到.根據(jù)勾股定理得到AC=12.根據(jù)矩形的性質即可得到結論.
(1)補全圖形如圖所示,
∵△ABC是直角三角形,
∴△ABC的外接圓圓心O是斜邊AB的中點.
連接OE,
∴OE=OB.
∴∠2=∠3,
∵BE平分∠ABC,
∴∠1=∠2,
∴∠1=∠3.
∴OE∥BF.
∵EF⊥BF,
∴EF⊥OE,
∴EF是△ABC外接圓的切線;
(2)在Rt△ABC中,BC=5,sin∠ABC=,
∴.
∵AC2+BC2=AB2,
∴AC=12.
∵∠ACF=∠CFE=∠FEH=90°,
∴四邊形CFEH是矩形.
∴EF=HC,∠EHC=90°.
∴EF=HC=AC=6.
科目:初中數(shù)學 來源: 題型:
【題目】小元步行從家去火車站,走到 6 分鐘時,以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結果比預計步行時間提前了3 分鐘.小元離家路程S(米)與時間t(分鐘)之間的函數(shù)圖象如圖,從家到火車站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為了改善市區(qū)交通狀況,計劃在康富路的北端修建通往資江北岸的新大橋,如圖,新大橋的兩端位于A、B兩點,小張為了測量A、B之間的河寬,在垂直于新大橋AB的直線型道路l上測得如下數(shù)據(jù):∠BDA=76.1°,∠BCA=68.2°,CD=82米.求:AB的長(精確到0.1米,參考數(shù)據(jù):sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E是CD邊上一點,,連接AE、BE、BD,且AE、BD交于點F.若,則( 。
A.15.5B.16.5C.17.5D.18.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點O是對角線AC的中點,點M為BC上一點,連接AM,且AB=AM,點E為BM中點,AF⊥AB,連接EF,延長FO交AB于點N.
(1)若BM=4,MC=3,AC=,求AM的長度;
(2)若∠ACB=45°,求證:AN+AF=EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,若點P和點關于x軸對稱,點和點關于直線l對稱,則稱點是點P關于x軸,直線l的二次對稱點.
(1)如圖1,點A(0,-1).
①若點B是點A關于x軸,直線:x=2的二次對稱點,則點B的坐標為 ;
②點C (-4,1)是點A關于x軸,直線:x=a的二次對稱點,則a的值為 ;
③點D(-1,0)是點A關于x軸,直線的二次對稱點,則直線的表達式為 ;
(2)如圖2,O的半徑為2.若O上存在點M,使得點M′是點M關于x軸,直線:x = b的二次對稱點,且點M′在射線(x≥0)上,b的取值范圍是 ;
(3)E(0,t)是y軸上的動點,E的半徑為2,若E上存在點N,使得點N′是點N關于x軸,直線:的二次對稱點,且點N′在x軸上,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點A、C均在坐標軸上,且OA=4,OC=3,動點M從點A出發(fā),以每秒1個單位長度的速度,沿AO向終點O移動;動點N從點C出發(fā)沿CB向終點B以同樣的速度移動,當兩個動點運動了x秒(0<x<4)時,過點N作NP⊥BC于點P,連接MP.
(1)直接寫出點B的坐標,并求出點P的坐標(用含x的式子表示);
(2)設△OMP的面積為S,求S與x之間的函數(shù)表達式;當x為何值時,S有最大值?最大值是多少?
(3)在兩個動點運動的過程中,是否存在某一時刻,使△OMP是等腰三角形?若存在,求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,C為⊙O上一動點,過點B作BE∥AC,交⊙O于點E,點D為射線BC上一動點,且AC平分∠BAD,連接CE.
(1)求證:AD∥EC;
(2)連接EA,若BC=6,則當CD= 時,四邊形EBCA是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一農(nóng)戶要建一個矩形雞舍,雞舍的一邊利用長為a米的墻,另外三邊用25米長的籬笆圍成,為方便進出,在垂直于墻的一邊CD上留一個1米寬的門,
(1)若a=12,問矩形的邊長分別為多少時,雞舍面積為80米2.
(2)問a的值在什么范圍時,(1)中的解有兩個?一個?無解?
(3)若住房墻的長度足夠長,問雞舍面積能否達到90平方米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com