【題目】正方形ABCD的邊長為12,在其角上去掉兩個全等的矩形DMNP和矩形BIJK,DM=IB=2,DP=BK=3,正方形EFGH頂點分別在正方形ABCD的邊上,且EH過N點,則正方形EFGH的邊長是( )

A.10
B.3
C.4
D.3 或4

【答案】D
【解析】設(shè)EP=x,可得HC=DE=x+3,DH=12﹣x﹣3=9﹣x,

因為PN∥DH,

可得:

解得:x1=1,x2=6,

當x=1時,EH=4 ,

當x=6時,EH=3 ,

所以答案是:D


【考點精析】通過靈活運用正方形的性質(zhì)和平行線分線段成比例,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;三條平行線截兩條直線,所得的對應(yīng)線段成比例即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列每個圖形及相應(yīng)推出的結(jié)論,其中正確的是( )
A.

∴∠AOB=80°
B.
∵∠AOB=∠A′O′B′

C.

∴AB=CD
D.
∵MN垂直平分AD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AB=AC,∠BAC=120°,在BC上取一點O,以O(shè)為圓心、OB為半徑作圓,且⊙O過A點. 如圖①,若⊙O的半徑為5,求線段OC的長;
如圖②,過點A作AD∥BC交⊙O于點D,連接BD,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,B=30°,ADAB,交BC于點D,AD=4,則BC的長為( )

A. 8 B. 4 C. 12 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,的平分線相交于,,則的度數(shù)為(

A.100°B.130°C.140°D.160°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有3個整式x,x+1,2,先隨機取一個整式作為分子,再在余下的整式中隨機取一個作為分母,恰能組成成分式的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,平分

1)求證:;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為宣傳節(jié)約用水,小明隨機調(diào)查了某小區(qū)部分家庭5月份的用水情況,并將收集的數(shù)據(jù)整理成如圖所示的統(tǒng)計圖.

(1)小明一共調(diào)查了多少戶家庭?

(2)求所調(diào)查家庭5月份用水量的眾數(shù)、平均數(shù).

(3)若該小區(qū)有400戶居民,請你估計這個小區(qū)5月份的用水量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,BC=2,點P、E、F分別為邊BC、AB、AC上的任意點,則PE+PF的最小值是_____

查看答案和解析>>

同步練習冊答案