【題目】函數(shù)ykx,y,y的圖象如圖所示,下列判斷正確的有_____.(填序號(hào))①k,a,b都是正數(shù);②函數(shù)yy的圖象會(huì)出現(xiàn)四個(gè)交點(diǎn);③A,D兩點(diǎn)關(guān)于原點(diǎn)對稱;④若BOA的中點(diǎn),則a4b

【答案】①③④

【解析】

根據(jù)反比例函數(shù)、一次函數(shù)的性質(zhì)以及反比例函數(shù)系數(shù)k的幾何意義即可判斷.

解:由圖像可知函數(shù)ykx經(jīng)過一、三象限,h函數(shù)yy在一、三象限,則k0,a0b0,故①正確;

由圖像可知函數(shù)yy的圖像沒有交點(diǎn),故②錯(cuò)誤;

根據(jù)正比例函數(shù)和反比例函數(shù)的圖像都是中心對稱圖像可知,A,D兩點(diǎn)關(guān)于原點(diǎn)對稱,故③正確;

BOA的中點(diǎn),軸OA2OB,作AMx軸于M,BNx軸于N

BNAM,

∴△BON∽△AOM,

,

,

b4a,故④正確:

故答案為①③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,D是邊BC上一點(diǎn),以點(diǎn)A為圓心,AD長為半徑作弧,如果與邊BC有交點(diǎn)E(不與點(diǎn)D重合),那么稱A-外截弧.例如,圖中的一條A-外截弧.在平面直角坐標(biāo)系xOy中,已知存在A-外截弧,其中點(diǎn)A的坐標(biāo)為,點(diǎn)B與坐標(biāo)原點(diǎn)O重合.

1)在點(diǎn),,中,滿足條件的點(diǎn)C是_______.

2)若點(diǎn)C在直線.

①求點(diǎn)C的縱坐標(biāo)的取值范圍.

②直接寫出A-外截弧所在圓的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程.1)用配方法解下列一元二次方程. x2x=0.

2)兩個(gè)數(shù)的和為8,積為9.75,求這兩個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,∠C=90°,AC=3BC=4,OBC的中點(diǎn),到點(diǎn)O的距離等于BC的所有點(diǎn)組成的圖形記為G,圖形GAB交于點(diǎn)D

1)補(bǔ)全圖形并求線段AD的長;

2)點(diǎn)E是線段AC上的一點(diǎn),當(dāng)點(diǎn)E在什么位置時(shí),直線ED 圖形G有且只有一個(gè)交點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x22x+3

1)求出頂點(diǎn),并畫出二次函數(shù)的圖象.

2)根據(jù)圖象解決下列問題

y0,寫出x的取值范圍.

求出﹣x2時(shí),y的最大值和最小值.

求出﹣5y3時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠B60°AB3cm,過點(diǎn)A作∠EAF60°,分別交DC,BC的延長線于點(diǎn)E,F,連接EF

1)如圖1,當(dāng)CECF時(shí),判斷△AEF的形狀,并說明理由;

2)若△AEF是直角三角形,求CE,CF的長度;

3)當(dāng)CE,CF的長度發(fā)生變化時(shí),△CEF的面積是否會(huì)發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公司要建一個(gè)矩形的產(chǎn)品展示臺(tái),展示臺(tái)的一邊靠找為9m的宣傳版(這條邊不能超出宣傳版),另三邊用總長為40m的紅布粘貼在展示臺(tái)邊上.設(shè)垂直于宣傳版的一邊長為

1)當(dāng)展示臺(tái)的面積為128m2時(shí),求的值;

2)設(shè)展示臺(tái)的面積為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+m1x+m的對稱軸為x,請你解答下列問題:

1m   ,拋物線與x軸的交點(diǎn)為   

2x取什么值時(shí),y的值隨x的增大而減。

3x取什么值時(shí),y0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為圓上一點(diǎn),且∠AOC120°,⊙O的半徑為2,P為圓上一動(dòng)點(diǎn),QAP的中點(diǎn),則CQ的長的最值是_____

查看答案和解析>>

同步練習(xí)冊答案