【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴重的燃油公交車,計劃購買A型和B型新能源公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需300萬元;若購買A型公交車2輛,B型公交車1輛,共需270萬元,
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為80萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1000萬元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?
【答案】(1) 購買A型新能源公交車每輛需80萬元,購買B型新能源公交車每輛需110萬元;(2)見解析.
【解析】
(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需300萬元;A型公交車2輛,B型公交車1輛,共需270萬元”列出方程組解決問題即可;
(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1000萬元”和“10輛公交車在該線路的年均載客總和不少于900萬人次”列出不等式組探討得出答案即可.
(1)設(shè)購買A型新能源公交車每輛需x萬元,購買B型新能源公交車每輛需y萬元,
由題意得:,
解得,
答:購買A型新能源公交車每輛需80萬元,購買B型新能源公交車每輛需110萬元;
(2)設(shè)購買A型公交車a輛,則B型公交車(10﹣a)輛,
由題意得,
解得:,
因為a是整數(shù),
所以a=4,5;
則共有兩種購買方案:
①購買A型公交車4輛,則B型公交車6輛:80×4+110×6=980萬元;
②購買A型公交車5輛,則B型公交車5輛:80×5+110×5=950萬元;
購買A型公交車5輛,則B型公交車5輛費用最少,最少總費用為950萬元.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖,則下列說法:①對稱軸是直線x=-1;②c=3:③ab>0;④當x<1時,y>0;⑤方程的根是和,正確的有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將繞點順時針旋轉(zhuǎn)到的位置,使點的對應(yīng)點落在直線上……,依次進行下去,若點的坐標是(0,1),點的坐標是,則點的橫坐標是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=3,在△ABC內(nèi)作第一個內(nèi)接正方形DEFG;然后取GF的中點P,連接PD、PE,在△PDE內(nèi)作第二個內(nèi)接正方形HIKJ;再取線段KJ的中點Q,在△QHI內(nèi)作第三個內(nèi)接正方形…依次進行下去,則第2014個內(nèi)接正方形的邊長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時加上4的是( 。
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在某校圖書館門前一段筆直的內(nèi)部道路AB上,過往車輛限速3米/秒在點B的正上方距其7米高的C處有一個探測儀.一輛轎車從點A勻速向點B行駛5秒后此轎車到達D點,探測儀測得∠CAB=18°,∠CDB=45°,求AD之間的距離,并判斷此轎車是否超速,(結(jié)果精確到0.01米)(參考數(shù)據(jù):sinl8°=0.309,cosl8°=0.951,tanl8°=0.325)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.如圖,反比例函數(shù)y=k/x圖像與直線y=-x交于A,B兩點, 將雙曲線右半支沿射線AB方向平移與左半支交于C,D. 點A到達A’點, A’B=BO, CE=6. 則k=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=60°,E為AB中點,F為BC上一點,GカCD上一點,連接EF,FG,且∠BFE=∠CFG.
(1)若G為CD中點吋,求證:EF=FG;
(2)設(shè),,求y芙于x的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A(-1,0),B(3,0),交y軸的負半軸于C,頂點為D.下列結(jié)論:①2a+b=0;②2c<3b;③當m≠1時,a+b<am2+bm;④當△ABD是等腰直角三角形時,則a=;其中正確的有( 。﹤.
A. 4B. 3C. 2D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com