【題目】將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長(zhǎng)直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2 ,P是AC上的一個(gè)動(dòng)點(diǎn).

(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到∠ABC的平分線上時(shí),連接DP、BP,求CP、DP的長(zhǎng);
(2)當(dāng)點(diǎn)P在運(yùn)動(dòng)過(guò)程中出現(xiàn)PD=BC時(shí),求此時(shí)∠PDA的度數(shù);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),以D,P,B,Q為頂點(diǎn)的平行四邊形的頂點(diǎn)Q恰好在邊BC上?求出此時(shí)平行四邊形的面積.

【答案】
(1)

解:在Rt△ABC中,AB=2,∠BAC=30°,∴BC,AC=3.

(1)如圖(1),作DFAC,

∵Rt△ACD中,ADCD,

DFAFCF

BP平分∠ABC

∴∠PBC=30°,

CP=1,PF

DP==


(2)

解:當(dāng)P點(diǎn)位置如圖(2)所示時(shí),

根據(jù)(1)中結(jié)論,DF,∠ADF=45°,又PDBC=,

,

∴∠PDF=30°.

∴∠PDA=∠ADF-∠PDF=15°.

當(dāng)P點(diǎn)位置如圖(3)所示時(shí),同(2)可得∠PDF=30°.

∴∠PDA=∠ADF+∠PDF=75°.


(3)

解:∵BCAC

∴只有當(dāng)DPAC時(shí),以D,PB,Q為頂點(diǎn)的四邊形為平行四邊形.

如圖,在DPBQ中,BCDP

∵∠ACB=90°,

DPAC

根據(jù)(1)中結(jié)論可知,DPCP,

SDPBQ=DP·CP=


【解析】(1)含30度角的直角三角形中,三邊的比是1::2,依此可求得CP;構(gòu)造直角三角形PDF,先求出PF和DE,即可求得PD;
(2)分類討論:P在DF左邊和P在DF右邊;
(3)只能是DP//BC,且DP=BC,則DP⊥AC,CP是平行線DP與BC之間的距離,則SDPBQ=DP·CP.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC經(jīng)過(guò)平移后得到△DEF,下列結(jié)論:①AB∥DE;②AD=BE;③BC=EF;④∠ACB=∠DFE,其中正確的有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.

(1)求證:PA是⊙O的切線;

(2)過(guò)點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)G,若AGAB=12,求AC的長(zhǎng);

(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】______和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,反過(guò)來(lái),數(shù)軸上的每一個(gè)點(diǎn)必定表示一個(gè)_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A是雙曲線在第三象限分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為邊作等邊三角形ABC,點(diǎn)C在第四象限內(nèi),且隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也在不斷變化,但點(diǎn)C始終在雙曲線上運(yùn)動(dòng),則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】﹣27的立方根是(
A.﹣3
B.+3
C.±3
D.±9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)完第2章“特殊的三角形”后,老師布置了一道思考題:
如圖,點(diǎn)M、N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.

(1)判斷△ABM與△BCN是否全等,并說(shuō)明理由.
(2)判斷∠BQM是否會(huì)等于60°,并說(shuō)明理由.
(3)若將題中的點(diǎn)M,N分別移動(dòng)到BC,CA的延長(zhǎng)線上,且BM=CN,是否能得到∠BQM=60°?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鞋店要進(jìn)一批新鞋,你是店長(zhǎng),應(yīng)關(guān)注下列哪個(gè)統(tǒng)計(jì)量( 。

A.平均數(shù)B.方差C.眾數(shù)D.中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)(x0)的圖象經(jīng)過(guò)菱形對(duì)角線的交點(diǎn)A,且與邊BC交于點(diǎn)F,點(diǎn)A的坐標(biāo)為(4,2).

(1)求反比例函數(shù)的表達(dá)式;

(2)求點(diǎn)F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案