【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))

(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.

【答案】解:(1)如圖,△A1B1C1 是△ABC關(guān)于直線l的對稱圖形。

(2)由圖得四邊形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4。

∴S四邊形BB1C1C。

【解析】(1)關(guān)于軸對稱的兩個(gè)圖形,各對應(yīng)點(diǎn)的連線被對稱軸垂直平分.作BM⊥直線l于點(diǎn)M,并延長到B1,使B1M=BM,同法得到A,C的對應(yīng)點(diǎn)A1,C1,連接相鄰兩點(diǎn)即可得到所求的圖形。

(2)由圖得四邊形BB1 C1C是等腰梯形,BB1=4,CC1=2,高是4,根據(jù)梯形的面積公式進(jìn)行計(jì)算即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE是ABC的中位線,F(xiàn)是DE的中點(diǎn),CF的延長線交AB于點(diǎn)G,若CEF的面積為12cm2,則SDGF的值為( )

A.4cm2 B.6cm2 C.8cm2 D.9cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CDAB邊上的高.點(diǎn)E從點(diǎn)B出發(fā)在直線BC上以2cm/s的速度移動,過點(diǎn)EBC的垂線交直線CD于點(diǎn)F.當(dāng)點(diǎn)E運(yùn)動________s時(shí),CF=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①(﹣2)101+(﹣2)100=﹣2100;②20172+2017一定可以被2018整除;③16.9× +15.1×能被4整除;兩個(gè)連續(xù)奇數(shù)的平方差是8的倍數(shù).其中說法正確的個(gè)數(shù)是( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB、C、D四個(gè)車站的位置如圖所示,A、B兩站之間的距離ABab,B、C兩站之間的距離BC=2ab,B、D兩站之間的距離BDa﹣2b﹣1.求:

(1)A、C兩站之間的距離AC

(2)若A、C兩站之間的距離AC=180km,求C、D兩站之間的距離CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一塊直角三角板OAB放在平面直角坐標(biāo)系中,B(2,0),∠AOB=60°,點(diǎn)A在第一象限,過點(diǎn)A的雙曲線為 .在x軸上取一點(diǎn)P,過點(diǎn)P作直線OA的垂線l,以直線l為對稱軸,線段OB經(jīng)軸對稱變換后的像是O′B′.
(1)當(dāng)點(diǎn)O′與點(diǎn)A重合時(shí),點(diǎn)P的坐標(biāo)是;
(2)設(shè)P(t,0),當(dāng)O′B′與雙曲線有交點(diǎn)時(shí),t的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=26°,∠C=70°,AD平分∠BAC

AEBC于點(diǎn)EEFAD于點(diǎn)F.

(1)求∠DAC的度數(shù);

(2)求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a、b、c是直角三角形的三邊,c為斜邊,n為正整數(shù),試判斷an+bn與cn的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大潤發(fā)超市在銷售某種進(jìn)貨價(jià)為20元/件的商品時(shí),以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價(jià)每上漲1元/件,其銷售量就將減少2件.
(1)為了實(shí)現(xiàn)每天1600元的銷售利潤,超市應(yīng)將這種商品的售價(jià)定為多少?
(2)設(shè)每件商品的售價(jià)為x元,超市所獲利潤為y元. ①求y與x之間的函數(shù)關(guān)系式;
②物價(jià)局規(guī)定該商品的售價(jià)不能超過40元/件,超市為了獲得最大的利潤,應(yīng)將該商品售價(jià)定為多少?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案