【題目】甲、乙兩家體育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定價5元,乒乓球拍每副定價20元.現(xiàn)兩家商店都搞促銷活動,甲店每買一副球拍贈一盒乒乓球;乙店按九折優(yōu)惠.某班級需購球拍4副,乒乓球x盒(x≥4).

1)若在甲店購買付款(元),在乙店購買付款(元),分別寫出與x的函數(shù)關(guān)系式;

2)買30盒乒乓球時,在哪家商店購買合算?

【答案】1,;(2)乙.

【解析】

試題(1)在甲店購買的付款數(shù)=4份球拍的總價+x﹣4)盒球的總價,在乙店購買的付款數(shù)=4份球拍的總價×0.9+x盒球的總價×0.9,把相關(guān)數(shù)值代入化簡即可;

2)令x=30,分別代入兩個表達(dá)式,計算后比較即可得到答案.

試題解析:(1,

2)當(dāng)x=30時,,在乙商店購買合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(3,﹣2)B(2,0).

(1)試確定C點坐標(biāo),使△ABC關(guān)于x軸成軸對稱,并連接ACBC.

(2)先作出△ABC關(guān)于y軸的對稱圖形△A'B'C'(不寫作法),再寫出A',B',C′三點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,按以下步驟作圖:分別以B,C為圓心,以大于BC的長為半徑作弧,弧線兩兩交于M、N兩點,作直線MN,與邊ACBC分別交于D、E兩點,連接BD、AE,若BAC=90°,在下列說法中:

EABC外接圓的圓心;

②圖中有4個等腰三角形;

ABE是等邊三角形;

④當(dāng)C=30°時,BD垂直且平分AE

其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點O,點EOA的中點,連接BE并延長交AD于點F,已知SAEF=4,則下列結(jié)論:①SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊥BD,CD⊥BD

1)若AB=9CD=4,BD=10,請問在BD上是否存在P點,使以PA、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似?若存在,求BP的長;若不存在,請說明理由;

2)若AB=9,CD=4,BD=12,請問在BD上存在多少個P點,使以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似?并求BP的長;

3)若AB=9,CD=4,BD=15,請問在BD上存在多少個P點,使以P、A、B三點為頂點的三角形與以P、CD三點為頂點的三角形相似?并求BP的長;

4)若AB=m,CD=nBD=l,請問mn,l滿足什么關(guān)系時,存在以P、AB三點為頂點的三角形與以PC、D三點為頂點的三角形相似的一個P點?兩個P點?三個P點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小龍在全校隨機(jī)抽取了一部分同學(xué)就“我最喜愛的體育項目”進(jìn)行了一次調(diào)查(每位同學(xué)必選且只選一項).下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:

(1)小龍一共抽取了   名學(xué)生.

(2)補(bǔ)全條形統(tǒng)計圖;

(3)求“其他”部分對應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是(  )

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OAOB,C是半徑OB上的一動點,連接AC并延長交⊙OD,過點D作直線交OB延長線于E,且DE=CE,已知OA=8.

(1)求證:ED是⊙O的切線;

(2)當(dāng)∠A=30°時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標(biāo)為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案