如圖所示,正方形與直角梯形所在平面互相垂直,,, .
(1)求證:平面;
(2)求四面體的體積.
(1)證明:見(jiàn)解析;(2)四面體的體積.
解析試題分析:(1)設(shè)正方形ABCD的中心為O,取BE中點(diǎn)G,連接FG,OG,由中位線定理,我們易得四邊形AFGO是平行四邊形,即FG∥OA,由直線與平面平行的判定定理即可得到AC∥平面BEF;
(2)由已知中正方形ABCD與直角梯形ADEF所在平面互相垂直,∠ADE=90°,我們可以得到AB⊥平面ADEF,結(jié)合DE=DA=2AF=2.分別計(jì)算棱錐的底面面積和高,代入棱錐體積公式即可求出四面體BDEF的體積.(1)的關(guān)鍵是證明出FG∥OA,(2)的關(guān)鍵是得到AB⊥平面ADEF,即四面體BDEF的高為AB.
試題解析:(1)證明:設(shè),取中點(diǎn),
連結(jié),所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/3/jdiy5.png" style="vertical-align:middle;" />,,所以,
從而四邊形是平行四邊形,. 2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f2/9/1ivdc4.png" style="vertical-align:middle;" />平面,平面, 4分
所以平面,即平面. 6分
(2)解:因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/49/1/qjnnr.png" style="vertical-align:middle;" />平面,,
所以平面. 8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/3/jdiy5.png" style="vertical-align:middle;" />,,,
所以的面積為, 10分
所以四面體的體積. 12分
考點(diǎn):1.直線與平面平行的判定;2.棱錐的體積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1。
(1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
(2)設(shè)F是BC的中點(diǎn),求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)在三棱柱中,側(cè)面為矩形,,,為的中點(diǎn),與交于點(diǎn),側(cè)面.
(1)證明:;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。
(1)證明:平面PAB⊥平面PBC;
(2)若,,PB與底面ABC成60°角,分別是與的中點(diǎn),是線段上任意一動(dòng)點(diǎn)(可與端點(diǎn)重合),求多面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是以為直徑的半圓上異于點(diǎn)的點(diǎn),矩形所在的平面垂直于該半圓所在平面,且
(Ⅰ)求證:;
(Ⅱ)設(shè)平面與半圓弧的另一個(gè)交點(diǎn)為,
①求證://;
②若,求三棱錐E-ADF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形為矩形,平面,為上的點(diǎn),且平面.
(1)求三棱錐的體積;
(2)設(shè)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面.
(Ⅰ)如果為線段VC的中點(diǎn),求證:平面;
(Ⅱ)如果正方形的邊長(zhǎng)為2, 求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形是正方形,平面,,分別為,的中點(diǎn),且.
(Ⅰ)求證:平面平面;
(Ⅱ)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖(1),在等腰直角三角形中,,點(diǎn)分別為線段的中點(diǎn),將和分別沿折起,使二面角和二面角都成直二面角,如圖(2)所示。
(1)求證:面;
(2)求平面與平面所成的銳二面角的余弦值;
(3)求點(diǎn)到平面的距離。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com