【題目】如圖,在中,,,,點(diǎn)O是AB的三等分點(diǎn),半圓O與AC相切,M,N分別是BC與半圓弧上的動(dòng)點(diǎn),則MN的最小值和最大值之和是( )
A. 5B. 6C. 7D. 8
【答案】B
【解析】
設(shè)⊙O與AC相切于點(diǎn)D,連接OD,作垂足為P交⊙O于F,此時(shí)垂線段OP最短,PF最小值為,當(dāng)N在AB邊上時(shí),M與B重合時(shí),MN經(jīng)過圓心,經(jīng)過圓心的弦最長(zhǎng),根據(jù)圖形與圓的性質(zhì)即可求解.
如圖,設(shè)⊙O與AC相切于點(diǎn)D,連接OD,作垂足為P交⊙O于F,
此時(shí)垂線段OP最短,PF最小值為,
∵,,
∴
∵,
∴
∵點(diǎn)O是AB的三等分點(diǎn),
∴,,
∴,
∵⊙O與AC相切于點(diǎn)D,
∴,
∴,
∴,
∴,
∴MN最小值為,
如圖,當(dāng)N在AB邊上時(shí),M與B重合時(shí),MN經(jīng)過圓心,經(jīng)過圓心的弦最長(zhǎng),
MN最大值,
,
∴MN長(zhǎng)的最大值與最小值的和是6.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.
(1)求BC的長(zhǎng);
(2)若∠CBE=36°,求∠ADC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在O中,弦BC垂直于半徑OA,垂足為E,D是優(yōu)弧BC上一點(diǎn),連接BD,AD,OC,∠ADB=30°.
(1)求∠AOC的度數(shù).
(2)若弦BC=8cm,求圖中劣弧BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上.
填空:線段AD,BE之間的關(guān)系為 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請(qǐng)判斷AD,BE的關(guān)系,并說明理由.
(3)解決問題
如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,將AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫出PC的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖一座拱橋的示意圖,已知橋洞的拱形是拋物線.當(dāng)水面寬為12m時(shí),橋洞頂部離水面4m.、
(1)建立平面直角坐標(biāo)系,并求該拋物線的函數(shù)表達(dá)式;
(2)若水面上升1m,水面寬度將減少多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)三點(diǎn),,.
(1)求拋物線的解析式和對(duì)稱軸;
(2)是拋物線對(duì)稱軸上的一點(diǎn),求滿足的值為最小的點(diǎn)坐標(biāo)(請(qǐng)?jiān)趫D1中探索);
(3)在第四象限的拋物線上是否存在點(diǎn),使四邊形是以為對(duì)角線且面積為的平行四邊形?若存在,請(qǐng)求出點(diǎn)坐標(biāo),若不存在請(qǐng)說明理由.(請(qǐng)?jiān)趫D2中探索)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=3動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)P(不與點(diǎn)A、C重合)作EF⊥AC,交AB或BC于點(diǎn)E,交AD或DC于點(diǎn)F,以EF為邊向右作正方形EFGH設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)①AC= .②當(dāng)點(diǎn)F在AD上時(shí),用含t的代數(shù)式直接表示線段PF的長(zhǎng) .
(2)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),求t的值.
(3)設(shè)方形EFGH的周長(zhǎng)為l,求l與t之間的函數(shù)關(guān)系式.
(4)直接寫出對(duì)角線AC所在的直線將正方形EFGH分成兩部分圖形的面積比為1:2時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的布袋中裝有4個(gè)只有顏色不同的球,其中1個(gè)黃球、1個(gè)藍(lán)球、2個(gè)紅球.
(1)任意摸出1個(gè)球,記下顏色后不放回,再任意摸出1個(gè)球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);
(2)現(xiàn)再將n個(gè)黃球放入布袋,攪勻后,使任意摸出1個(gè)球是黃球的概率為,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)商存有1200千克產(chǎn)品,生產(chǎn)成本為150元/千克,售價(jià)為400元千克.因市場(chǎng)變化,準(zhǔn)備低價(jià)一次性處理掉部分存貨,所得貨款全部用來生產(chǎn)產(chǎn)品,產(chǎn)品售價(jià)為200元/千克.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),產(chǎn)品存貨的處理價(jià)格(元/千克)與處理數(shù)量(千克)滿足一次函數(shù)關(guān)系(),且得到表中數(shù)據(jù).
(千克) | (元/千克) |
200 | 350 |
400 | 300 |
(1)請(qǐng)求出處理價(jià)格(元千克)與處理數(shù)量(千克)之間的函數(shù)關(guān)系;
(2)若產(chǎn)品生產(chǎn)成本為100元千克,產(chǎn)品處理數(shù)量為多少千克時(shí),生產(chǎn)產(chǎn)品數(shù)量最多,最多是多少?
(3)由于改進(jìn)技術(shù),產(chǎn)品的生產(chǎn)成本降低到了元/千克,設(shè)全部產(chǎn)品全部售出,所得總利潤(rùn)為(元),若時(shí),滿足隨的增大而減小,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com