【題目】如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)三點(diǎn),,.
(1)求拋物線的解析式和對(duì)稱軸;
(2)是拋物線對(duì)稱軸上的一點(diǎn),求滿足的值為最小的點(diǎn)坐標(biāo)(請(qǐng)?jiān)趫D1中探索);
(3)在第四象限的拋物線上是否存在點(diǎn),使四邊形是以為對(duì)角線且面積為的平行四邊形?若存在,請(qǐng)求出點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.(請(qǐng)?jiān)趫D2中探索)
【答案】(1),函數(shù)的對(duì)稱軸為:;(2)點(diǎn);(3)存在,點(diǎn)的坐標(biāo)為或.
【解析】
根據(jù)點(diǎn)的坐標(biāo)可設(shè)二次函數(shù)表達(dá)式為:,由C點(diǎn)坐標(biāo)即可求解;
連接交對(duì)稱軸于點(diǎn),此時(shí)的值為最小,即可求解;
,則,將該坐標(biāo)代入二次函數(shù)表達(dá)式即可求解.
解:根據(jù)點(diǎn),的坐標(biāo)設(shè)二次函數(shù)表達(dá)式為:,
∵拋物線經(jīng)過(guò)點(diǎn),
則,解得:,
拋物線的表達(dá)式為: ,
函數(shù)的對(duì)稱軸為:;
連接交對(duì)稱軸于點(diǎn),此時(shí)的值為最小,
設(shè)BC的解析式為:,
將點(diǎn)的坐標(biāo)代入一次函數(shù)表達(dá)式:得:
解得:
直線的表達(dá)式為:,
當(dāng)時(shí),,
故點(diǎn);
存在,理由:
四邊形是以為對(duì)角線且面積為的平行四邊形,
則 ,
點(diǎn)在第四象限,故:則,
將該坐標(biāo)代入二次函數(shù)表達(dá)式得:
,
解得:或,
故點(diǎn)的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=30°,∠C=90°,E是斜邊AB的中點(diǎn),點(diǎn)P為AC邊上一動(dòng)點(diǎn),若Rt△ABC的直角邊AC=4,則PB+PE的最小值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△A'BC’,連接A'C,則A'C的長(zhǎng)為( 。
A. 6B. 4+2C. 4+3D. 2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)三點(diǎn),,.
(1)求拋物線的解析式和對(duì)稱軸;
(2)是拋物線對(duì)稱軸上的一點(diǎn),求滿足的值為最小的點(diǎn)坐標(biāo)(請(qǐng)?jiān)趫D1中探索);
(3)在第四象限的拋物線上是否存在點(diǎn),使四邊形是以為對(duì)角線且面積為的平行四邊形?若存在,請(qǐng)求出點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.(請(qǐng)?jiān)趫D2中探索)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:有這樣一個(gè)問(wèn)題:關(guān)于的一元二次方程有兩個(gè)不相等的且非零的實(shí)數(shù)根探究,,滿足的條件.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過(guò)程:①設(shè)一元二次方程對(duì)應(yīng)的二次函數(shù)為;
②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中,,滿足的條件,列表如下:
方程根的幾何意義:
方程兩根的情況 | 對(duì)應(yīng)的二次函數(shù)的大致圖象 | ,,滿足的條件 |
方程有兩個(gè)不相等的負(fù)實(shí)根 | ||
____________ | ||
方程有兩個(gè)不相等的正實(shí)根 | ____________ | ____________ |
1)參考小明的做法,把上述表格補(bǔ)充完整;
(2)若一元二次方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于-1,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長(zhǎng)OA、OC分別為12cm、6cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且18a+c=0.
(1)求拋物線的解析式.
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以1cm/s的速度向終點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以2cm/s的速度向終點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)△PBQ的面積為S,試寫(xiě)出S與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.
②當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC=5,BC=6,D,E分別是邊AB,AC上的兩個(gè)動(dòng)點(diǎn)(D不與A,B重合),且保持DE∥BC,以DE為邊,在點(diǎn)A的異側(cè)作正方形DEFG.
(1)當(dāng)FG與BC重合時(shí),求正方形DEFG的邊長(zhǎng);
(2)設(shè)AD=x,△ABC與正方形DEFG重疊部分的面積為y,試求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)當(dāng)△BDG是等腰三角形時(shí),請(qǐng)直接寫(xiě)出AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)和一次函數(shù),其中一次
函數(shù)圖象經(jīng)過(guò)(a,b)與(a+1,b+k)兩點(diǎn).
(1) 求反比例函數(shù)的解析式.
(2) 如圖,已知點(diǎn)A是第一象限內(nèi)上述兩個(gè)函數(shù)圖象的交點(diǎn),求A點(diǎn)坐標(biāo).
(3) 利用(2)的結(jié)果,請(qǐng)問(wèn):在X軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來(lái);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com