【題目】已知∠AOB=45°,點(diǎn)P在∠AOB內(nèi)部,點(diǎn)P1與點(diǎn)P關(guān)于OA對(duì)稱,點(diǎn)P2與點(diǎn)P關(guān)于OB對(duì)稱,連接P1P2交OA、OB于E、F,若P1E=,OP=,則EF的長(zhǎng)度是_____.
【答案】
【解析】
由P,P1關(guān)于直線OA對(duì)稱,P、P2關(guān)于直線OB對(duì)稱,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判斷△P1OP2是等腰直角三角形,由軸對(duì)稱可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,進(jìn)而得出∠EPF=90°,最后依據(jù)勾股定理列方程,即可得到EF的長(zhǎng)度.
∵P,P1關(guān)于直線OA對(duì)稱,P、P2關(guān)于直線OB對(duì)稱,
∴OP=OP1=OP2=,∠AOP=∠AOP1,∠BOP=∠BOP2,
∵∠AOB=45°,
∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=90°,
∴△P1OP2是等腰直角三角形,
∴P1P2==2,
設(shè)EF=x,
∵P1E==PE,
∴PF=P2F=-x,
由軸對(duì)稱可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,
∴∠EPF=90°,
∴PE2+PF2=EF2,即()2+(-x)2=x2,
解得x=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在平行四邊形ABCD中,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求證:
(1)△AEH≌△CGF;
(2)四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上三點(diǎn)A,O,B對(duì)應(yīng)的數(shù)分別為﹣5,0,1,點(diǎn)M為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
請(qǐng)回答問題:
(1)A、B兩點(diǎn)間的距離是_____,若點(diǎn)M到點(diǎn)A、點(diǎn)B的距離相等,那么x的值是_____;
(2)若點(diǎn)A先沿著數(shù)軸向右移動(dòng)6個(gè)單位長(zhǎng)度,再向左移動(dòng)4個(gè)單位長(zhǎng)度后所對(duì)應(yīng)的數(shù)字是 ____ ;
(3)當(dāng)x為何值時(shí),點(diǎn)M到點(diǎn)A、點(diǎn)B的距離之和是8;
(4)如果點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng)時(shí),點(diǎn)A和點(diǎn)B分別以每秒1個(gè)單位長(zhǎng)度和每秒4個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng),且三點(diǎn)同時(shí)出發(fā),那么幾秒種后點(diǎn)M運(yùn)動(dòng)到點(diǎn)A、點(diǎn)B之間,且點(diǎn)M到點(diǎn)A、點(diǎn)B的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”長(zhǎng)假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.
(1)若兩人同時(shí)出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時(shí)能相遇?
(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時(shí)二人相遇,則小張的車速應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,底面積為30cm2的空?qǐng)A柱容器內(nèi)水平放置著由兩個(gè)實(shí)心圓柱組成的“幾何體”,現(xiàn)向容器內(nèi)勻速注水,注滿為止,在注水過程中,水面高度h(cm)與注水時(shí)間t(s)之間的關(guān)系如圖②.
(1)求圓柱形容器的高和勻速注水的水流速度;
(2)若“幾何體”的下方圓柱的底面積為15cm2 , 求“幾何體”上方圓柱體的高和底面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的有理數(shù)為﹣6,點(diǎn)B表示的有理數(shù)為6,點(diǎn)P從點(diǎn)A出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度在數(shù)軸上由A向B運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回,仍然以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)至點(diǎn)A停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).
(1)求t=1時(shí)點(diǎn)P表示的有理數(shù);
(2)求點(diǎn)P與點(diǎn)B重合時(shí)的t值;
(3)在點(diǎn)P沿?cái)?shù)軸由點(diǎn)A到點(diǎn)B再回到點(diǎn)A的運(yùn)動(dòng)過程中,求點(diǎn)P與點(diǎn)A的距離(用含t的代數(shù)式表示);
(4)當(dāng)點(diǎn)P表示的有理數(shù)與原點(diǎn)的距離是2個(gè)單位長(zhǎng)度時(shí),請(qǐng)求出所有滿足條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,3),點(diǎn)B的坐標(biāo)為(4,0),C為第一象限內(nèi)一點(diǎn),AC⊥y軸,BC⊥x軸,D坐標(biāo)為(m,0)(0<m<4).
(1)若D為OB的中點(diǎn),求直線DC的解析式;
(2)若△ACD為等腰三角形,求m的值;
(3)E為四邊形OACB的某一邊上一點(diǎn).
①若E在邊BC上,滿足△AOD≌△DBE,求m的值;
②若使△EOD為等腰三角形的點(diǎn)E有且只有4個(gè),直接寫出符合條件的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為CD邊上一點(diǎn),F為BC延長(zhǎng)線上一點(diǎn),CE=CF.
(1)求證:△BCE≌△DCF;
(2)若∠BEC=60°,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某容器由A、B、C三個(gè)連通長(zhǎng)方體組成,其中A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是整個(gè)容器容積的(容器各面的厚度忽略不計(jì)),A、B的總高度為12厘米.現(xiàn)以均勻的速度(單位:cm3/min)向容器內(nèi)注水,直到注滿為止.已知單獨(dú)注滿A、B分別需要的時(shí)間為10分鐘、8分鐘.
(1)求注滿整個(gè)容器所需的總時(shí)間;
(2)設(shè)容器A的高度為xcm,則容器B的高度為 cm;
(3)求容器A的高度和注水的速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com