【題目】如圖,在數(shù)軸上點A表示的有理數(shù)為﹣6,點B表示的有理數(shù)為6,點P從點A出發(fā)以每秒4個單位長度的速度在數(shù)軸上由AB運動,當(dāng)點P到達點B后立即返回,仍然以每秒4個單位長度的速度運動至點A停止運動,設(shè)運動時間為t(單位:秒).

(1)求t=1時點P表示的有理數(shù);

(2)求點P與點B重合時的t值;

(3)在點P沿數(shù)軸由點A到點B再回到點A的運動過程中,求點P與點A的距離(用含t的代數(shù)式表示);

(4)當(dāng)點P表示的有理數(shù)與原點的距離是2個單位長度時,請求出所有滿足條件的t值.

【答案】(1)點P 所表示的有理數(shù)是﹣3;(2)4(3)當(dāng)點P表示的有理數(shù)與原點的距離是3個單位長度時,t值的值為1秒或3秒或5秒或7秒

【解析】

(1)根據(jù)P點的速度,有理數(shù)的加法可得答案;

(2)根據(jù)兩點間的距離公式,可得AB的長度根據(jù)路程除以速度,可得時間;

(3)根據(jù)分類討論:0≤t≤4,4≤t≤8,速度乘以時間等于路程,可得答案;

(4)根據(jù)絕對值的意義,可得P點表示的數(shù),根據(jù)速度與時間的關(guān)系,可得答案

(1)﹣6+3×1=﹣3,當(dāng)t=1時,點P所表示的有理數(shù)是﹣3;

(2)當(dāng)點P與點B重合時,點P所運動的路程為|6﹣(﹣6)|=12,

由路程除以速度得:t=12÷3=4;

(3)點P沿數(shù)軸由點A到點B再回到點A的運動過程中,點P與點A的距離分為兩種情況:

當(dāng)點P到達點B前,即0≤t≤4時,點P與點A的距離是3t;

當(dāng)點P到達點B再回到點A的運動過程中,即4≤t≤8時,點P與點A的距離是:12-3(t-4)=24﹣3t;

(4)當(dāng)點P表示的有理數(shù)與原點(設(shè)原點為O)的距離是3個單位長度時,P點表示的數(shù)是-33,則有以下四種情況:

當(dāng)點P由點A到點O時:OP=AO﹣3t,即:6﹣3t=3,t=1;

當(dāng)點P由點O到點B時:OP=3t﹣AO,即:3t﹣6=3,t=3;

當(dāng)點P由點B到點O時:OP=18﹣3t,即:18﹣3t=3,t=5;

當(dāng)點P由點OA時:OP=3t﹣18,即:3t﹣18=3,t=7,

即:當(dāng)點P表示的有理數(shù)與原點的距離是3個單位長度時,t值的值為1秒或3秒或5秒或7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題情境】

如圖1,四邊形ABCD是正方形,MBC邊上的一點,ECD邊的中點,AE平分∠DAM

【探究展示】

1)證明:AM=AD+MC;

2AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.

【拓展延伸】

3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=2x和函數(shù)y=的圖象交于A、B兩點,過點A作AEx軸于點E,若AOE的面積為4,P是坐標(biāo)平面上的點,且以點B、O、E、P為頂點的四邊形是平行四邊形,則k= ,滿足條件的P點坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AB邊上有一動點P,連接PD,線段PD繞點P順時針旋轉(zhuǎn)90°后,得到線段PE,且PE交BC于F,連接DF,過點E作EQ⊥AB的延長線于點Q.
(1)求線段PQ的長;
(2)問:點P在何處時,△PFD∽△BFP,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點P從點B出發(fā),沿射線BC的方向以每秒2cm的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1cm的速度向點D運動,點P,Q分別從點B,A同時出發(fā),當(dāng)點Q運動到點D時,點P隨之停止運動,設(shè)運動的時間為t(秒).

(1)當(dāng)t為何值時,四邊形PQDC是平行四邊形

(2)當(dāng)t為何值時,以C,D,Q,P為頂點的梯形面積等于60cm2?

(3)是否存在點P,使△PQD是等腰三角形?若存在,請求出所有滿足要求的t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y= 的圖象過點A(1,2).
(1)求該函數(shù)的解析式;
(2)過點A分別向x軸和y軸作垂線,垂足為B和C,求四邊形ABOC的面積;
(3)求證:過此函數(shù)圖象上任意一點分別向x軸和y軸作垂線,這兩條垂線與兩坐標(biāo)軸所圍成矩形的面積為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列函數(shù):①y=;②y=x-1;③y=-3x+1;④y=;⑤y=- (x>0);⑥y= (x<0).其中yx的增大而減小的是______(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點C與原點O重合點B在y軸的正半軸上,點A在函數(shù)y=k>0,x>0)的圖象上點D的坐標(biāo)為(4,3).

(1)求k的值;

(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點D落在函數(shù)y=k>0,x>0)的圖象上時,求菱形ABCD沿x軸正方向平移的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F

1)求證:四邊形BDFC是平行四邊形;

2)若△BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

同步練習(xí)冊答案