【題目】如圖,在Rt△ABC中,∠ABC=90°,點D在BC的延長線上,且BD=AB,過點B作BE⊥AC,與BD的垂線DE交于點E.
(1)求證:△ABC≌△BDE;
(2)△BDE可由△ABC旋轉得到,利用尺規(guī)作出旋轉中心O(保留作圖痕跡,不寫作法).

【答案】
(1)證明:在Rt△ABC中,

∵∠ABC=90°,

∴∠ABE+∠DBE=90°,

∵BE⊥AC,

∴∠ABE+∠A=90°,

∴∠A=∠DBE,

∵DE是BD的垂線,

∴∠D=90°,

在△ABC和△BDE中,

,

∴△ABC≌△BDE(ASA)


(2)作法一:如圖①,點O就是所求的旋轉中心.

作法二:如圖②,點O就是所求的旋轉中心.


【解析】(1)利用已知得出∠A=∠DBE,進而利用ASA得出△ABC≌△BDE即可;(2)利用垂直平分線的性質可以作出,或者利用四邊形性質得出旋轉中心即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+b(b>4)與x軸、y軸分別相交于點A、B,與反比例函數(shù) 的圖象相交于點C、D(點C在點D的左側),⊙O是以CD長為半徑的圓.CE∥x軸,DE∥y軸,CE、DE相交于點E.
(1)△CDE是三角形;點C的坐標為 , 點D的坐標為(用含有b的代數(shù)式表示);
(2)b為何值時,點E在⊙O上?
(3)隨著b取值逐漸增大,直線y=x+b與⊙O有哪些位置關系?求出相應b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.
(1)求證:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為17cm,弦AB∥CD,AB=30cm,CD=16cm,圓心O位于AB,CD的上方,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過點A(0,﹣4)的拋物線y= x2+bx+c與x軸相交于B(﹣2,0),C兩點,O為坐標原點.

(1)求拋物線的解析式;
(2)將拋物線y= x2+bx+c向上平移 個單位長度,再向左平移m(m>0)個單位長度得到新拋物線,若新拋物線的頂點P在△ABC內,求m的取值范圍;
(3)設點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某月的日歷表,在此日歷表上可以用一個矩形圈出3×3個位置的9個數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個數(shù)中,最大數(shù)與最小數(shù)的和為42,則這9個數(shù)的和為( 。

A. 69 B. 84 C. 189 D. 207

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式 x﹣1>2x,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標系中,O為坐標原點,點A(0,4),C(2,0).將矩形OABC繞點O按順時針方向旋轉135°,得到矩形EFGH(點E與O重合).
(1)若GH交y軸于點M,則∠FOM=°,OM=;
(2)將矩形EFGH沿y軸向上平移t個單位. ①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個平方單位,試求當0<t≤4 ﹣2時,S與t之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正三角形ABC內的一點,且PA=5,PB=12,PC=13,若將△PAC繞點A逆時針旋轉后,得到△P′AB,求點P與點P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

同步練習冊答案