【題目】為了實現(xiàn)省城合肥跨越發(fā)展,近兩年我市開始全面實施暢通一環(huán)工程,如圖為一環(huán)路的一座下穿路拱橋,它輪廓是拋物線,橋的跨度AB=16米,拱高為6.

1)請以A點為坐標原點,AB所在直線為x軸建立平面直角坐標系,將拋物線放在直角坐標系中,求出拋物線的解析式;

2)若橋拱下是雙向行車道,其中一條行車道能否并排行駛寬3米,高2米的兩輛汽車(汽車間隔不小于1米)說明理由

【答案】(1)建圖見解析;y=.0≤x≤16);(2)不能,理由見解析.

【解析】

1)根據(jù)題目可知A、B,C的坐標,設出拋物線的解析式代入可求解;
2)設DE是兩輛車的寬度和,作EG垂直AB交拋物線于G,求出EG則可求解.

解:(1)以A點為坐標原點,AB所在直線為x軸建立平面直角坐標系,如圖:

根據(jù)題目條件,A、B的坐標分別是(0,0)、(16,0)、頂點C的坐標是(86).

設拋物線的解析式y=ax-82+6,將A的坐標代入得64a+6=0,
解得:a=
所以拋物線的表達式是y=;(0≤x≤16);

2)設DE是兩輛車最內(nèi)側與最外側的寬度和=3+1+3=7AE=1,則E點坐標是(1,0),

E點作EG垂直AB交拋物線于G,則yH==2,
根據(jù)拋物線的特點,可知一條行車道不能并排行駛寬3米,高2米的兩輛汽車(汽車間隔不小于1米).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人同時登山,甲乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

(1)甲登山的速度是   米/分鐘,乙在A地提速時距地面的高度b為   米.

(2)若乙提速后,乙的速度是甲登山速度的3倍,請求出乙提速后y和x之間的函數(shù)關系式.

(3)登山多長時間時,乙追上了甲,此時乙距A地的高度為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)過幾秒,使PBQ的面積等于8cm2?

(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=﹣1,且過點(,0).有下列結論:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正確的結論是_____(填寫正確結論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點,過點Py軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;

(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】濟南某中學在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息,回答下列問題:

(l)楊老師采用的調(diào)查方式是   (填“普查”或“抽樣調(diào)查”);

(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應的圓心角度數(shù)   

(3)請估計全校共征集作品的什數(shù).

(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點C為直徑BA的延長線上一點,CD切⊙O于點D

(Ⅰ)如圖①,若∠CDA=26°,求∠DAB的度數(shù);

(Ⅱ)如圖②,過點B作⊙O的切線交CD的延長線于點E,若⊙O的半徑為3BC=10,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】超速行駛是一種十分危險的違法駕駛行為,在一條東西走向的筆直高速公路MN上,小型車限速為每小時100千米. 現(xiàn)有一輛小汽車行駛到A處時,發(fā)現(xiàn)北偏東30°方向200米處有一超速監(jiān)測儀P. 10秒后,小汽車行駛至B處,測得監(jiān)測儀PB處的北偏西45°方向上. 請問:這輛車超速了嗎?通過計算說明理由.(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點,C、Dl2上的兩點,某人在點A處測得∠CAB=90°,DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

同步練習冊答案