如圖,四邊形ABDC中,△EDC是由△ABC繞頂點C旋轉(zhuǎn)40°所得,頂點A恰好轉(zhuǎn)到AB上一點E的位置,則∠1+∠2=______度.
在△BCD中,∠BCD=∠ACE=40°,BC=CD,
∴△BCD為等腰三角形,
∴∠1=
1
2
(180°-40°)=70°,
∵∠BEC為△ACE的外角,
∴∠2+∠DEC=∠ACE+∠A,而∠DEC與∠A為對應角,
∴∠2=∠ACE=40°,
∴∠1+∠2=70°+40°=110°.
故答案為:110°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點O為直線AB上一點,過O點作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時三角板旋轉(zhuǎn)的角度為______度;
(2)繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關系,并說明理由;
(3)在上述直角三角板從圖1旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點O按15°每秒的速度旋轉(zhuǎn),當直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點O的運動時間t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

填空或解答:點B、C、E在同一直線上,點A、D在直線CE的同側,AB=AC,EC=ED,∠BAC=∠CED,直線AE、BD交于點F.
(1)如圖①,若∠BAC=60°,則∠AFB=______;如圖②,若∠BAC=90°,則∠AFB=______;
(2)如圖③,若∠BAC=α,則∠AFB=______(用含α的式子表示);
(3)將圖③中的△ABC繞點C旋轉(zhuǎn)(點F不與點A、B重合),得圖④或圖⑤.在圖④中,∠AFB與∠α的數(shù)量關系是∠AFB=90°-
1
2
α
;在圖⑤中,∠AFB與∠α的數(shù)量關系是______.請你任選其中一個結論證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將Rt△ABC繞點C按順時針方向旋轉(zhuǎn)90°到△A′B′C的位置,已知斜邊AB=10cm,BC=6cm,設A′B′的中點是M,連接AM,則AM=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在由邊長為1的小正方形組成的網(wǎng)格中,△ABC的頂點均落在格點上.
(1)將△ABC繞點O順時針旋轉(zhuǎn)90°后,得到△A1B1C1,在網(wǎng)格中畫出△A1B1C1;
(2)連接AB1、B1C,請直接寫出四邊形ABCB1的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點G是正方形ABCD的邊CD上的一點(不包括點C、D).
(1)將△CBG繞點C按順時針方向旋轉(zhuǎn)90°,請你在圖中畫出旋轉(zhuǎn)后的圖形;
(2)觀察圖形,猜想BG與其對應線段之間的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,AC=BC=10,在△DCE中,∠DCE=90°,DC=EC=6,點D在線段AC上,點E在線段BC的延長線上.將△DCE繞點C旋轉(zhuǎn)60°得到△D′CE′(點D的對應點為點D′,點E的對應點為點E′),連接AD′、BE′,過點C作CN⊥BE′,垂足為N,直線CN交線段AD′于點M,則MN的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長是2,E是DC上一點,△ADE經(jīng)順時針旋轉(zhuǎn)后與△ABF重合.
(1)指出旋轉(zhuǎn)的中心和旋轉(zhuǎn)的角度;
(2)如果連結EF,那么△AEF是怎樣的三角形?請說明理由.
(3)已知點G在BC上,且∠GAE=45°.
①試說明GE=DE+BG.
②若E是DC的中點,求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知Rt△ABC和三角形外一點P,按要求完成圖形:
(1)將△ABC繞頂點C順時針方向旋轉(zhuǎn)90°,得△A′B′C′;
(2)將△ABC繞點P沿逆時針方向旋轉(zhuǎn)60°,得△A″B″C″.

查看答案和解析>>

同步練習冊答案