下列四組線段中,可以構(gòu)成直角三角形的是( )
A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3
B【考點(diǎn)】勾股定理的逆定理.
【專題】計(jì)算題.
【分析】由勾股定理的逆定理,只要驗(yàn)證兩小邊的平方和等于最長邊的平方即可.
【解答】解:A、42+52=41≠62,不可以構(gòu)成直角三角形,故A選項(xiàng)錯(cuò)誤;
B、1.52+22=6.25=2.52,可以構(gòu)成直角三角形,故B選項(xiàng)正確;
C、22+32=13≠42,不可以構(gòu)成直角三角形,故C選項(xiàng)錯(cuò)誤;
D、12+()2=3≠32,不可以構(gòu)成直角三角形,故D選項(xiàng)錯(cuò)誤.
故選:B.
【點(diǎn)評(píng)】本題考查勾股定理的逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點(diǎn).
(1)寫出點(diǎn)O到△ABC的三個(gè)頂點(diǎn)A、B、C的距離的關(guān)系(不要求證明)
(2)如果點(diǎn)M、N分別在線段AB、AC上移動(dòng),在移動(dòng)過程中保持AN=BM,請(qǐng)判斷△OMN的形狀,請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,已知EH=EB=3,AE=4,則CH的長是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知△ABC中,∠C是其最小的內(nèi)角,如果過頂點(diǎn)B的一條直線把這個(gè)三角形分割成了兩個(gè)三角形,其中一個(gè)為等腰三角形,另一個(gè)為直角三角形,則稱這條直線為△ABC的關(guān)于點(diǎn)B的伴侶分割線.例如:如圖1,在Rt△ABC中,∠C=20°,過頂點(diǎn)B的一條直線BD交AC于點(diǎn)D,且∠DBC=20°,顯然直線BD是△ABC的關(guān)于點(diǎn)B的伴侶分割線.
(1)如圖2,在△ABC中,∠C=20°,∠ABC=110°.請(qǐng)?jiān)趫D中畫出△ABC的關(guān)于點(diǎn)B的伴侶分割線,并標(biāo)注角度;
(2)在△ABC中,設(shè)∠B的度數(shù)為y,最小內(nèi)角∠C的度數(shù)為x.試探索y與x之間滿足怎樣的關(guān)系時(shí),△ABC存在關(guān)于點(diǎn)B的伴侶分割線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延長線于F,連接CD,給出四個(gè)結(jié)論:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB﹣BC=2FC;其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com