【題目】已知,△ABC為等邊三角形,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).以
AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
⑴如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),
求證:∠ADB=∠AFC;②請(qǐng)直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;
⑵如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線(xiàn)上時(shí),其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?請(qǐng)寫(xiě)出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程;
⑶如圖3,當(dāng)點(diǎn)D在邊CB的延長(zhǎng)線(xiàn)上時(shí),且點(diǎn)A、F分別在直線(xiàn)BC的異側(cè),其他條件不變,請(qǐng)補(bǔ)全圖形,并直接寫(xiě)出∠AFC、∠ACB、∠DAC之間存在的等量關(guān)系.
【答案】⑴①證明:∵△ABC為等邊三角形,
∴AB=AC,∠BAC=60°
∵∠DAF=60°
∴∠BAC=∠DAF
∴∠BAD=∠CAF
∵四邊形ADEF是菱形,∴AD=AF
∴△ABD≌△ACF
∴∠ADB=∠AFC
②結(jié)論:∠AFC=∠ACB+∠DAC成立.
⑵結(jié)論∠AFC=∠ACB+∠DAC不成立.
∠AFC、,∠ACB、∠DAC之間的等量關(guān)系是
∠AFC=∠ACB-∠DAC(或這個(gè)等式的正確變式)
證明:∵△ABC為等邊三角形
∴AB=AC
∠BAC=60°
∵∠BAC=∠DAF
∴∠BAD=∠CAF
∵四邊形ADEF是菱形
∴AD=AF.
∴△ABD≌△ACF
∴∠ADC=∠AFC
又∵∠ACB=∠ADC+∠DAC,
∴∠AFC=∠ACB-∠DAC
⑶補(bǔ)全圖形如下圖
∠AFC、∠ACB、∠DAC之間的等量關(guān)系是
∠AFC=2∠ACB-∠DAC
(或∠AFC+∠DAC+∠ACB=180°以及這兩個(gè)等式的正確變式).
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱(chēng)這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).
請(qǐng)從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)MN是線(xiàn)段BC的垂直平分線(xiàn),垂足為O,P為射線(xiàn)OM上的一點(diǎn),連接BP,PC.將線(xiàn)段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),得到線(xiàn)段PQ(PQ與PC不重合),旋轉(zhuǎn)角為α(0°<α<180°)直線(xiàn)CQ交MN與點(diǎn)D.
(1)如圖1,當(dāng)α=30°,且點(diǎn)P與點(diǎn)O重合時(shí),∠CDM的度數(shù)是 ;
(2)如圖2,且點(diǎn)P與點(diǎn)O不重合.
①當(dāng)α=120°時(shí),求∠CDM的度數(shù);
②用含α的代數(shù)式表示∠CDM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鮮豐水果店計(jì)劃用元/盒的進(jìn)價(jià)購(gòu)進(jìn)一款水果禮盒以備銷(xiāo)售.
據(jù)調(diào)查,當(dāng)該種水果禮盒的售價(jià)為元/盒時(shí),月銷(xiāo)量為盒,每盒售價(jià)每增長(zhǎng)元,月銷(xiāo)量就相應(yīng)減少盒,若使水果禮盒的月銷(xiāo)量不低于盒,每盒售價(jià)應(yīng)不高于多少元?
在實(shí)際銷(xiāo)售時(shí),由于天氣和運(yùn)輸?shù)脑,每盒水果禮盒的進(jìn)價(jià)提高了,而每盒水果禮盒的售價(jià)比(1)中最高售價(jià)減少了,月銷(xiāo)量比(1)中最低月銷(xiāo)量盒增加了,結(jié)果該月水果店銷(xiāo)售該水果禮盒的利潤(rùn)達(dá)到了元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=x2+bx+c與x軸交于點(diǎn)A和B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)M是拋物線(xiàn)上在x軸下方的動(dòng)點(diǎn),過(guò)M作MN∥y軸交直線(xiàn)BC于點(diǎn)N,求線(xiàn)段MN的最大值;
(3)E是拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),F是拋物線(xiàn)上一點(diǎn),是否存在以A,B,E,F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某乒乓球館普通票價(jià)20元/張,暑假為了促銷(xiāo),新推出兩種優(yōu)惠卡:①金卡售價(jià)600元/張,每次憑卡不再收費(fèi);②銀卡售價(jià)150元/張,每次憑卡另收10元;暑期普通票正常出售,兩種優(yōu)惠卡僅限暑期使用,不限次數(shù).設(shè)打乒乓x次時(shí),所需總費(fèi)用為y元.
(1)分別寫(xiě)出選擇銀卡、普通票消費(fèi)時(shí),y與x之間的函數(shù)關(guān)系式;
(2)在同一個(gè)坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖像如圖所示,請(qǐng)根據(jù)函數(shù)圖像,寫(xiě)出選擇哪種消費(fèi)方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,聯(lián)結(jié)AP并延長(zhǎng)AP交CD于F點(diǎn),
(1)求證:四邊形AECF為平行四邊形;
(2)如果PA=PC,聯(lián)結(jié)BP,求證:△APB△EPC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兄弟兩人騎馬進(jìn)城,全程51,馬每小時(shí)行12,但只能由一個(gè)人騎.哥哥每小時(shí)步行5,弟弟每小時(shí)步行4.兩人輪換騎馬和步行,騎馬者走過(guò)一段距離就下鞍拴馬(下鞍拴馬的時(shí)間忽略不計(jì)),然后獨(dú)自步行,而步行者到達(dá)此地,再上馬前進(jìn).若他們?cè)缟?/span>8:00出發(fā),并且同時(shí)到達(dá)城門(mén),那么他們到達(dá)的時(shí)間是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省計(jì)劃5年內(nèi)全部地級(jí)市通高鐵.某高鐵在泰州境內(nèi)的建設(shè)即將展開(kāi),現(xiàn)有大量的沙石需要運(yùn)輸.某車(chē)隊(duì)有載質(zhì)量為8t、10t的卡車(chē)共12輛,全部車(chē)輛運(yùn)輸一次能運(yùn)輸100t沙石.
(1)求某車(chē)隊(duì)載質(zhì)量為8t、10t的卡車(chē)各有多少輛;
(2)隨著工程的進(jìn)展,某車(chē)隊(duì)需要一次運(yùn)輸沙石165t以上,為了完成任務(wù),準(zhǔn)備新增購(gòu)這兩種卡車(chē)共7輛,車(chē)隊(duì)有多少種購(gòu)買(mǎi)方案?請(qǐng)你一一求出.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com