【題目】近年來網(wǎng)約車十分流行,初三某班學生對“美團”和“滴滴”兩家網(wǎng)約車公司各10名司機月收入進行了一項抽樣調(diào)查,司機月收入(單位:千元)如圖所示:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均月收入/千元 | 中位數(shù)/千元 | 眾數(shù)/千元 | 方差/千元2 | |
“美團” | ① | 6 | 6 | 1.2 |
“滴滴” | 6 | ② | 4 | ③ |
(1)完成表格填空;
(2)若從兩家公司中選擇一家做網(wǎng)約車司機,你會選哪家公司,并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,有一個銳角為60°,BC=6.若點P在直線AC上(不與點A,C重合),且∠ABP=30°,則CP的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8…頂點依次用A1,A2,A3,A4,…表示,則頂點A2019的坐標是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么,我們稱拋物線C1與拋物線C2互相依存.
(1)已知拋物線①:y=﹣2x2+4x+3與拋物線②:y=2x2+4x﹣1,請判斷拋物線①與拋物線②是否互相依存,并說明理由.
(2)將拋物線C1:y=﹣2x2+4x+3沿x軸翻折,再向右平移m(m>0)個單位,得到拋物線C2,若拋物線C1與C2互相依存,求m的值.
(3)試問:如果對稱軸不同的兩條拋物線(二次函數(shù)圖象)互相依存,那么它們的函數(shù)表達式中的二次項系數(shù)之間有什么數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提高學生書寫漢字的能力,增強保護漢字的意識,我市舉辦了首屆“漢字聽寫大賽”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(4)第5組10名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小宇與小強兩名男同學能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點A的坐標為(﹣1,0),且OC=OB,tan∠OAC=4.
(1)求拋物線的解析式;
(2)若點D和點C關(guān)于拋物線的對稱軸對稱,直線AD下方的拋物線上有一點P,過點P作PH⊥AD于點H,作PM平行于y軸交直線AD于點M,交x軸于點E,求△PHM的周長的最大值.
(3)在(2)的條件下,如圖2,在直線EP的右側(cè)、x軸下方的拋物線上是否存在點N,過點N作NG⊥x軸交x軸于點G,使得以點E、N、G為頂點的三角形與△AOC相似?如果存在,請直接寫出點G的坐標:如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分線,則∠BOC的度數(shù)為( 。
A.105°B.115°C.125°D.135°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉(zhuǎn)90°得到線段CE,線段BD繞點B順時針旋轉(zhuǎn)90°得到線段BF,連接BF,則圖中陰影部分的面積是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com