【題目】如圖,正方形ABCD中,AB=2,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段CE,線段BD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BF,連接BF,則圖中陰影部分的面積是_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,E為BC邊上一點(diǎn),BE=3,M為線段AE上一點(diǎn),射線BM交正方形的一邊于點(diǎn)F,且BF=AE,則BM的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示平面直角坐標(biāo)系中,已知A(-2,2),B(-3,-2),C(3,-2).
(1)在圖中畫(huà)出△ABC;
(2)將△ABC先向上平移4個(gè)單位長(zhǎng),再向右平移2個(gè)單位長(zhǎng)得到△A1B1C1,寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(3)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),CF的延長(zhǎng)線交AB于點(diǎn)G,若△CEF的面積為12cm2,則S△DGF的值為( )
A.4cm2 B.6cm2 C.8cm2 D.9cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)過(guò)H的直線與y軸相交于點(diǎn)P,過(guò)O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F,若 時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG 與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了開(kāi)闊學(xué)生的視野,積極組織學(xué)生參加課外讀書(shū)活動(dòng),某讀書(shū)小組隨機(jī)抽取本校的部分學(xué)生,調(diào)查他們最喜愛(ài)的圖書(shū)類別(圖書(shū)分為文學(xué)類、文藝類、科普類、其他等四類),并將調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中的信息解答下列問(wèn)題
(1)被調(diào)查的學(xué)生人數(shù)為 人;
(2)科普類圓心角度數(shù)為 度,補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該校有1800名學(xué)生,估計(jì)全校最喜愛(ài)文學(xué)類圖書(shū)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點(diǎn)M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動(dòng)點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動(dòng),經(jīng)過(guò)t秒,以點(diǎn)P為圓心,cm為半徑的圓與△ABC的邊相切(切點(diǎn)在邊上),請(qǐng)寫(xiě)出t可取的一切值 (單位:秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過(guò)A、B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,AC=FC.
(1)求證:AC是⊙O的切線;
(2)已知圓的半徑R=5,EF=3,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):
在數(shù)學(xué)中,利用圖形在變化過(guò)程中的不變性質(zhì),常?梢哉业浇鉀Q問(wèn)題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書(shū)中有這樣一個(gè)例子:請(qǐng)問(wèn)如何在一個(gè)三角形ABC的AC和BC兩邊上分別取一點(diǎn)X和Y,使得AX=BY=XY.(如圖)解決這個(gè)問(wèn)題的操作步驟如下:
第一步,在CA上作出一點(diǎn)D,使得CD=CB,連接BD.第二步,在CB上取一點(diǎn)Y',作Y'Z∥CA,交BD于點(diǎn)Z',并在AB上取一點(diǎn)A',使Z'A'=Y'Z'.第三步,過(guò)點(diǎn)A作AZ∥A'Z',交BD于點(diǎn)Z.第四步,過(guò)點(diǎn)Z作ZY∥AC,交BC于點(diǎn)Y,再過(guò)點(diǎn)Y作YX∥ZA,交AC于點(diǎn)X.
則有AX=BY=XY.
下面是該結(jié)論的部分證明:
證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,
又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.
∴ .
同理可得.∴.
∵Z'A'=Y'Z',∴ZA=YZ.
在數(shù)學(xué)中,利用圖形在變化過(guò)程中的不變性質(zhì),常?梢哉业浇鉀Q問(wèn)題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書(shū)中有這樣一個(gè)例子:請(qǐng)問(wèn)如何在一個(gè)三角形ABC的AC和BC兩邊上分別取一點(diǎn)X和Y,使得AX=BY=XY.(如圖)解決這個(gè)問(wèn)題的操作步驟如下:
第一步,在CA上作出一點(diǎn)D,使得CD=CB,連接BD.第二步,在CB上取一點(diǎn)Y',作Y'Z∥CA,交BD于點(diǎn)Z',并在AB上取一點(diǎn)A',使Z'A'=Y'Z'.第三步,過(guò)點(diǎn)A作AZ∥A'Z',交BD于點(diǎn)Z.第四步,過(guò)點(diǎn)Z作ZY∥AC,交BC于點(diǎn)Y,再過(guò)點(diǎn)Y作YX∥ZA,交AC于點(diǎn)X.
則有AX=BY=XY.
下面是該結(jié)論的部分證明:
證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,
又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.
∴ .
同理可得.∴.
∵Z'A'=Y'Z',∴ZA=YZ.
任務(wù):(1)請(qǐng)根據(jù)上面的操作步驟及部分證明過(guò)程,判斷四邊形AXYZ的形狀,并加以證明;
(2)請(qǐng)?jiān)僮屑?xì)閱讀上面的操作步驟,在(1)的基礎(chǔ)上完成AX=BY=XY的證明過(guò)程;
(3)上述解決問(wèn)題的過(guò)程中,通過(guò)作平行線把四邊形BA'Z'Y'放大得到四邊形BAZY,從而確定了點(diǎn)Z,Y的位置,這里運(yùn)用了下面一種圖形的變化是 .
A.平移 B.旋轉(zhuǎn) C.軸對(duì)稱 D.位似
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com