【題目】如圖,AB為⊙O的直徑,CD是弦,且CDAB于點(diǎn)P,若AB4OP1,則弦CD所對(duì)的圓周角等于_____度.

【答案】60120

【解析】

先確定弦CD所對(duì)的圓周角∠CBD和∠CAD兩個(gè),再利用圓的相關(guān)性質(zhì)及菱形的判定證四邊形ODBC是菱形,推出,根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ)即可分別求出的度數(shù).

如圖,連接OC,ODBC,BDAC,AD,

AB為⊙O的直徑,AB4

OB2,

又∵OP1,

BP1

CDAB,

CD垂直平分OB,

COCB,DODB,

OCOD

OCCBDBOD,

∴四邊形ODBC是菱形,

∴∠COD=∠CBD,

∵∠COD2CAD

∴∠CBD2CAD,

又∵四邊形ADBC是圓內(nèi)接四邊形,

∴∠CAD+CBD180°,

∴∠CAD60°,∠CBD120°,

∵弦CD所對(duì)的圓周角有∠CAD和∠CBD兩個(gè),

故答案為:60120

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1x22x,直線y2=-2xb相交于AB兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)為2.當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1,y2,取m(|y1y2|y1y2).則

A. 當(dāng)x<-2時(shí),my2B. mx的增大而減。

C. 當(dāng)m2時(shí),x0D. m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O 的半徑長為2,點(diǎn)C為直徑AB的延長線上一點(diǎn),且BC=2.過點(diǎn)C任作一條直線l.若直線l上總存在點(diǎn)P,使得過點(diǎn)P所作的⊙O 的兩條切線互相垂直,則∠ACP的最大值等于__________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣2x+8與反比例函數(shù)(x0)的圖象交于A(m,6),B(3,n)兩點(diǎn),與x軸交于D點(diǎn).

1)求反比例函數(shù)的解析式.

2)在第一象限內(nèi),根據(jù)圖象直接寫出一次函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個(gè)球是白球的概率是多少?

(2)從箱子中任意摸出一個(gè)球,不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勝利中學(xué)從全校學(xué)生中隨機(jī)選取一部分學(xué)生,對(duì)他們每周上網(wǎng)的時(shí)間t進(jìn)行調(diào)查,調(diào)查情況分為:小時(shí);小時(shí)小時(shí);小時(shí)小時(shí);小時(shí)四種,并將統(tǒng)計(jì)結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:

求參加調(diào)查的學(xué)生的人數(shù);

求扇形圖中組扇形的圓心角度數(shù),并通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

在所調(diào)查的學(xué)生中,隨機(jī)選取一名學(xué)生,求他每周上網(wǎng)時(shí)間大于小時(shí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明家在A處,門前有一口池塘,隔著池塘有一條公路lABAl的小路.現(xiàn)新修一條路AC到公路l.小明測(cè)量出∠ACD=31°,∠ABD=45°,BC=100m.請(qǐng)你幫小明計(jì)算他家到公路l的距離AD的長度?(精確到1m;參考數(shù)據(jù)tan31°≈0.60,sin31°≈0.51,cos31°≈0.86)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A1,-4)為拋物線的頂點(diǎn),點(diǎn)Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

3)若點(diǎn)Qy軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里有3個(gè)相同的小球,將3個(gè)小球分別標(biāo)示號(hào)碼1、23,每次從盒子里隨機(jī)取出1個(gè)小球且取后放回,預(yù)計(jì)取球10次.若規(guī)定每次取球時(shí),取出的號(hào)碼即為得分,則前八次的取球得分情況如下表所示

次數(shù)

1

2

3

4

5

6

7

8

9

10

得分

2

1

1

2

2

3

2

3

1)設(shè)第1次至第8次取球得分的平均數(shù)為,求的值:

2)求事件9次和第10次取球得分的平均數(shù)等于發(fā)生的概率;(列表法或樹狀圖)

查看答案和解析>>

同步練習(xí)冊(cè)答案