【題目】無錫市新區(qū)某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為250元,每桶水的進價是5元,規(guī)定銷售單價不得高于12元/桶,也不得低于7元/桶,調(diào)查發(fā)現(xiàn)日均銷售量p(桶)與銷售單價x(元)的函數(shù)圖象如圖所示.

(1)求日均銷售量p(桶)與銷售單價x(元)的函數(shù)關系;

(2)若該經(jīng)營部希望日均獲利1350元,那么銷售單價是多少?

【答案】(1)日均銷售量p(桶)與銷售單價x(元)的函數(shù)關系為p=﹣50x+850;(2)該經(jīng)營部希望日均獲利1350元,那么銷售單價是9元.

【解析】

(1)設日均銷售p(桶)與銷售單價x(元)的函數(shù)關系為:p=kx+b(k≠0),把(7,500),(12,250)代入,得到關于k,b的方程組,解方程組即可;(2)設銷售單價應定為x元,根據(jù)題意得,(x-5)p-250=1350,由(1)得到p=-50x+850,于是有(x-5)(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,滿足7≤x≤12x的值為所求;

(1)設日均銷售量p(桶)與銷售單價x(元)的函數(shù)關系為p=kx+b,

根據(jù)題意得,

解得k=﹣50,b=850,

所以日均銷售量p(桶)與銷售單價x(元)的函數(shù)關系為p=﹣50x+850;

(2)根據(jù)題意得一元二次方程 (x﹣5)(﹣50x+850)﹣250=1350,

解得x1=9,x2=13(不合題意,舍去),

∵銷售單價不得高于12元/桶,也不得低于7元/桶,

∴x=13不合題意,

答:若該經(jīng)營部希望日均獲利1350元,那么銷售單價是9元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為正方形外一點,,則的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點A(2,0),點B (01),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點PPCx軸,垂足為C,把ACP沿AP翻折,使點C落在點D處,若以AD,P為頂點的三角形與ABP相似,則所有滿足此條件的點P的坐標為___________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一張長方形紙片按如圖方式折疊,使頂點和點重合,折痕為.,

1)求的長;

2)求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖求加權平均數(shù)時,統(tǒng)計中常用各組的組中值代表各組的實際數(shù)據(jù),把各組的頻數(shù)看作相應組中值的權,請你依據(jù)以上知識,解決下面的實際問題.

為了解5路公共汽車的運營情況,公交部門統(tǒng)計了某天5路公共汽車每個運行班次的載客量,并按載客量的多少分成A,B,C,D四組,得到如下統(tǒng)計圖:

(1)求A組對應扇形圓心角的度數(shù),并寫出這天載客量的中位數(shù)所在的組;

(2)求這天5路公共汽車平均每班的載客量;

(3)如果一個月按30天計算,請估計5路公共汽車一個月的總載客量,并把結果用科學記數(shù)法表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線與反比例函數(shù)交于、兩點與軸交于,若,則

A. 6 B. 7 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線,軸分別交于點,與反比例函數(shù)圖象交于點,,過點軸的垂線交該反比例函數(shù)圖象于點

求點的坐標.

①求的值.

②試判斷點與點是否關于原點成中心對稱?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)和形是數(shù)學的兩個主要研究對象,我們經(jīng)常運用數(shù)形結合、數(shù)形轉(zhuǎn)化的方法解決一些數(shù)學問題.下面我們來探究由數(shù)思形,以形助數(shù)的方法在解決代數(shù)問題中的應用.

1)探究的幾何意義:如圖①,在直角坐標系中,設點M的坐標為(x,y),過MMPx軸于P,作MQy軸于Q,則P點坐標為(x0),Q點坐標為(0,y),即OP|x|,OQ|y|,在△OPM中,PMOQ|y|,則MO,因此,的幾何意義可以理解為點M(x,y)與點O(0,0)之間的距離OM

的幾何意義可以理解為點N1   (填寫坐標)與點O(0,0)之間的距離N1O

②點N2(5,﹣1)與點O(0,0)之間的距離ON2   

(2)探究的幾何意義:如圖②,在直角坐標系中,設點A′的坐標為(x﹣1,y﹣5),由探究(1)可知,A′O=,將線段A′O先向右平移1個單位,再向上平移5個單位,得到線段AB,此時點A的坐標為(x,y),點B的坐標為(1,5),因為AB=A′O,所以AB=,因此的幾何意義可以理解為點A(x,y)與點B(1,5)之間的距離.

3)探究的幾何意義:請仿照探究二(2)的方法,在圖③中畫出圖形,那么的幾何意義可以理解為點C   (填寫坐標)與點D(x,y)之間的距離.

4)拓展應用:①的幾何意義可以理解為:點A(x,y)與點E(1,﹣4)的距離與點A(x,y)與點F   (填寫坐標)的距離之和.

的最小值為   (直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司根據(jù)市場計劃調(diào)整投資策略,對,兩種產(chǎn)品進行市場調(diào)查,收集數(shù)據(jù)如表:

項目

產(chǎn)品

年固定成本

(單位:萬元)

每件成本

(單位:萬元)

每件產(chǎn)品銷售價

(萬元)

每年最多可生產(chǎn)的件數(shù)

其中是待定常數(shù),其值是由生產(chǎn)的材料的市場價格決定的,變化范圍是,銷售產(chǎn)品時需繳納萬元的關稅,其中為生產(chǎn)產(chǎn)品的件數(shù),假定所有產(chǎn)品都能在當年售出,設生產(chǎn)兩種產(chǎn)品的年利潤分別為、(萬元),寫出、之間的函數(shù)關系式,注明其自變量的取值范圍.

查看答案和解析>>

同步練習冊答案