【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.

(1)如圖1,E,G分別是OB,OC上的點(diǎn),CE與DG的延長(zhǎng)線相交于點(diǎn)F.若DF⊥CE,求證:OE=OG;

(2)如圖2,H是BC上的點(diǎn),過(guò)點(diǎn)H作EH⊥BC,交線段OB于點(diǎn)E,連結(jié)DH交CE于點(diǎn)F,交OC于點(diǎn)G.若OE=OG,

①求證:∠ODG=∠OCE;

②當(dāng)AB=1時(shí),求HC的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)①證明見(jiàn)解析;②

【解析】試題分析:(1)欲證明OE=OG,只要證明DOG≌△COEASA)即可;

(2)①欲證明∠ODG=OCE,只要證明ODG≌△OCE即可;

②設(shè)CH=x,由CHE∽△DCH,可得,即HC2=EHCD,由此構(gòu)建方程即可解決問(wèn)題;

試題解析:(1)證明:如圖1中,∵四邊形ABCD是正方形,∴ACBD,OD=OC,∴∠DOG=COE=90°,∴∠OEC+OCE=90°,DFCE,∴∠OEC+ODG=90°,∴∠ODG=OCE,∴△DOG≌△COEASA),OE=OG

(2)①證明:如圖2中,∵OG=OE,DOG=COE=90°OD=OC,∴△ODG≌△OCE∴∠ODG=OCE

②解:設(shè)CH=x∵四邊形ABCD是正方形,AB=1,BH=1﹣xDBC=BDC=ACB=45°,EHBC∴∠BEH=EBH=45°,EH=BH=1﹣x,∵∠ODG=OCE∴∠BDCODG=ACBOCE,∴∠HDC=ECH,EHBC∴∠EHC=HCD=90°,∴△CHE∽△DCH,HC2=EHCD,x2=(1﹣x)1,解得x=(舍棄),∴HC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yx24x3的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),y軸交于點(diǎn)C,拋物線的對(duì)稱軸與x軸交于點(diǎn)D.

(1)求點(diǎn)A,點(diǎn)B和點(diǎn)D的坐標(biāo);

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)若動(dòng)點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿AB向點(diǎn)B運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)N從點(diǎn)D出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí)點(diǎn)M,N同時(shí)停止運(yùn)動(dòng)問(wèn)點(diǎn)M,N運(yùn)動(dòng)到何處時(shí)MNB的面積最大,試求出最大面積.

    (備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A-4,3),點(diǎn)B-4,0,OA=5,以點(diǎn)O為直角頂點(diǎn),點(diǎn)C在第一象限內(nèi),作等腰直角△AOC.

1)直接寫(xiě)出點(diǎn)C坐標(biāo):

2)直接寫(xiě)出四邊形ABOC的面積:

3)在y軸找一點(diǎn)P,使得△BOP的面積等于四邊形ABOC的面積,請(qǐng)直接寫(xiě)出點(diǎn)P坐標(biāo):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在一個(gè)長(zhǎng)方形廣場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓形的花壇.若廣場(chǎng)的長(zhǎng)為m米,寬為n米,圓形的半徑為r米.

1)列式表示廣場(chǎng)空地的面積.

2)若廣場(chǎng)的長(zhǎng)為300米,寬為200米,圓形的半徑為30米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).

3)如圖2所示,在(2)的條件下,若在廣場(chǎng)的中間再建一個(gè)半徑為R的圓形花壇,使廣場(chǎng)的空地面積不少于廣場(chǎng)總面積的,求R的最大整數(shù)值(π3.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店出售A、B兩種商品,一月份這兩種商品的利潤(rùn)都是10萬(wàn)元,后因某種原因確定增加出售A種商品的數(shù)量,使A種商品每月利潤(rùn)的增長(zhǎng)率都為a,同時(shí)減少B種商品的數(shù)量,使B種商品每月利潤(rùn)減少的百分率也都是a,(1)分別求出二月份出售A和B兩種商品的利潤(rùn)是多少萬(wàn)元?(2)求出三月份出售A、B兩種商品的總利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+ACE=90°

1)請(qǐng)判斷ABCD的位置關(guān)系并說(shuō)明理由;

2)如圖2,當(dāng)∠E=90°ABCD的位置關(guān)系保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問(wèn)∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說(shuō)明理由;

3)如圖3P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn)且ABCD的位置關(guān)系保持不變,當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2﹣2x+ca0)與x軸、y軸分別交于點(diǎn)A,BC三點(diǎn),已知點(diǎn)A﹣2,0),點(diǎn)C0,﹣8),點(diǎn)D是拋物線的頂點(diǎn).

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

2)如圖1,拋物線的對(duì)稱軸與x軸交于點(diǎn)E,第四象限的拋物線上有一點(diǎn)P,將△EBP沿直線EP折疊,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B'落在拋物線的對(duì)稱軸上,求點(diǎn)P的坐標(biāo);

3)如圖2,設(shè)BC交拋物線的對(duì)稱軸于點(diǎn)F,作直線CD,點(diǎn)M是直線CD上的動(dòng)點(diǎn),點(diǎn)N是平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)B,F,MN為頂點(diǎn)的四邊形是菱形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB和直線CD相交于點(diǎn)O,OF平分∠COE,過(guò)點(diǎn)OOGOF.

1)若∠AOE=80°,∠COF=22°,則∠BOD= ;

2)若∠COE=40°,試說(shuō)明:OG平分∠DOE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算的值為( )

A. 5048B. 50C. 4950D. 5050

查看答案和解析>>

同步練習(xí)冊(cè)答案